板块类运动问题
1.两个物体之间相对运动的问题
问题的提出:两个物体叠加起来,在外力F作用下的运动状态是需要讨论的。如果外力F过小,那 么两物体是相对静止的,如果外力F过大,那么两物体是相对运动的。
两个物体间要发生相对运动的条件:两个物体间的静摩擦力必须达到最大值 此类问题的处理方法:
(1)假设两个物体相对静止,对两个物体分别写牛顿第二定律 (2)根据加速度相等,得出静摩擦力的表达式,
(3)根据静摩擦力小于最大静摩擦力,据此可以求出临界的外力Fo
(4)讨论:当F>Fo,两物体之间是相对运动的。对两个物体分别写牛顿第二定律,不受外力F的物体的加
速度是恒定不变的。当F 问题的提出:一个物体在一个木板上滑动,如果木板的长度有限,那么一定需要讨论物体是否能从 木板上掉下来。 处理方法: (1) 判断两物体共速时的相对位移与木板长度之间的关系。若乂相=',则物体恰好不从木板上掉下。(这是一个临界条件!可以求出木板的最小长度) (2) (3) 若则两物体不能达到共速,物体会从木板上落下,物体离开木板时,二者的速度是不相同的。 若,町则两物体能达到共速,共速后依然有一段过程,二者相对静止。 常见的情形有以下几种: (1)最简单的问题:两个物体处于光滑的水平面上,上面的物块以初速度滑上木板,在滑动摩擦力作用下,最终达到一个共速的状态,最后一直匀速运动下去(相对静止)。此类问题可以通过动量守恒定律快速的解出共速的速度,进而可以通过功能关系计算相对位移。(此类问题本质上应该属于动量守恒 中完全非弹性碰撞的范畴,可以从动力学角度分析,熟悉牛顿第二定律和匀变速运动) (2)两个物体叠加起来,只有下面木板运动,木板在外力F作用下,先匀加速后匀减速,物块恰好不 从木板上掉落,相对位移恰好为木板的长度,与物块没有什么关系。 (3)问题(1)的变体,实际上难度远超过问题(1),只需要将水平面改为粗糙的。两个物体相对运动, 一个加速,一个减速,但是水平面是粗糙的,当两个物体相对静止时,需要判断两个物体在地面摩擦力 的作用下是一起相对静止还是相对运动?这就回到了第一类问题上。典型例题:2013新课标II (4)两个物体叠放在斜面上,先相对运动,再相对静止或者相对运动。两个物体经过的状态都有两 个,然后得计算相对位移。典型例题:2015新课标II。 方法提炼: 从以上遇到的题型可以看出。此类问题比较难的就是两个物体同时经历了两个过程,然后计算相对位移,处理这类问题关键点在于: (1)正确的判断出物体的运动过程 (2)V-t图像若有拐点,说明该拐点肯定是摩擦力突变的位置,注意画出摩擦力的方向。 (3)根据牛顿第二定律计算两物体在不同阶段的加速度(注意下面木板所受摩擦力大小,斜面上物体所受 摩擦力大小) (4)尽可能的用v-t图像处理。 典型例题分析: 考点1:用牛顿第二定律分析两物体相对静止和相对运动时的加速度 例1:12011新课标】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量 为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的 水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是 () 【分析】:1.本题是对板块类问题模型的考察。 2.F过小,两物体相对静止,F过大,两物体相对运动。根据牛顿第二定律计算物体的加速度。 选A。开始运动时F较小,两物体之间为静摩擦力不会相对滑动,由牛顿第二定律有,kt=(m+m) .一k一..一..一 a,解得a=t,在a-t图象中是一条直线,设与城之间的动摩擦因数为w,m1的最大加 mdm F增大到使m的加速度a2>g时,两物体开始分离,此时两物体之间为滑动摩擦 速度a1qg,当 m1 mg 力,对m应用牛顿第二定律有,(1mg=miai,解得ai=为定值,在a—t图象中是一条平行于水 mi 平t轴的直线,对m应用牛顿第二定律有,kt—用2g=ma,解得a^mt—闻,由于盘> k ,即分离后在a-t图象中a2的斜率更大,故B、GD错,A正确。 mi+m 22 2 例2:★★★120i4江苏8](多选)如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地 i 面上.A、B间的动摩擦因数为丛B与地面间的动摩擦因数为2d最大静摩擦力等于滑动摩擦力,重力加 速度为g.现对A施加一水平拉力F,则() A.当F<2科mg寸,A、B都相对地面静止 5i B.当F=2wm。寸,A的加速度为3dg H C.当F>3科mg寸,A相对B滑动 i D.无论F为何值,B的加速度不会超过2dg 【分析】i.两个物体要相对地面滑动,F得大于地面对B的滑动摩擦力。 2 .A和B之间发生相对滑动,需要计算临界力F的大小,需要注意摩擦因数不同。 3 .下面物体B的最大加速度可以计算出!(A对B的摩擦力达到最大静摩擦力时加速度最大) 答案BCD 33 解析当0 误,选项C正确.当F=5pmg寸,A与B共同的加速度a=—另一=1^8选项B正确.F较大时, 23lH3 3 2^mg-ymgi 取物块B为研究对象,物块B的加速度最大为a2=m=2^g选项D正确. 考点2:板块类运动的问题的运动分析 例3:★★★$□图所示,质量为M的长木板,静止放置在粗糙水平地面上,有一个质量为m、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物 块和木板的v-t图象分别如图中的折线acd和bcd所示,a、b、c、d点的坐标为a(0,10)、b(0, 0)、c(4,4)、d(12,0).根据v-t图象,求: (1)物块冲上木板做匀减速直线运动的加速度大小ai,木板开始做匀加速直线运动的加速度大小a2,达 到相同速度后一起匀减速直线运动的加速度大小为a3 (2)物块质量m与长木板质量M之比 (3)从图像可以看出,经过多长时间两物体相对静止,求出此时两物体的位移 (4)物块相对长木板滑行的距离As 例4:★★★12013新课标全国卷n】一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物 块轻放到木板上,以后木板运动的速度-时间图像如图所示。已知物块与木板的质量相等,物块与木板间及木 板与地面间均有摩擦。物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。取重力加速 度的大小g=10m/s2,求: (1)物块与木板间、木板与地面间的动摩擦因数; (2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小。 【分析】1.从v-t图像分析物块和木板的加速度,求出摩擦因数。2.物块和木板相对静止时,是一起匀减 速还是分别运动,需要判断。3.计算出木板和物块的位移,计算相对位移。 【解析】(1)从t=0时开始,木板对物块的摩擦力使物块由静止开始加速,物块和地面对木板的摩擦力使木板 减速,直到两者具有共同速度为止。由题图可知,在t1=0.5s时,物块和木板的速度相同为v1=1m/s。设t=0 到t=t1时间内,物块和木板的加速度大小分别为a1和a2,则 v11 a[=一——m/s2=2m/s2 t10.5 a?=v0v1m/s2=8m/s2 t10.5 设物块与木板间、木板与地面间的动摩擦因数分别为科1、附根据牛顿第二定律, 对物块有11mg=ma1 对木板有1mg+2因mg=ma2 联立方程得:岗=0.2 ^2=0.3 (2)在ti时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向。设物块与木板之间 的摩擦力大小为f,物块和木板的加速度大小分别为a'i和a'2,由牛顿第二定律得 对物块有f=ma'i 对木板有2wmg-f=ma'2 假设物块相对木板静止,即f<同mg,则a'i=a'2,得f=^mg>pimg,与假设矛盾,所以物块相对木板向前减速滑 动,而不是与木板共同运动,物块加速度大小a'i=a1=2m/s2 物块的v-t图像如图中的点划线所示。此过程木板的加速度a'2=2(j2g-pig=4m/s2 由运动学公式可得,物块和木板相对地面的位移分别为2 cV1一 xi=2X——=0.5m 2ai v0v1v1213 x2=ti——m 22a28 物块相对木板的位移大小为x=x2-xi=i.i25m 【答案】(i)0.20.3(2)i.i25m 例5:★★★★120i5新课标n25】下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾 角为0=37(sin37=3)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆 5 A(含有大量泥土),A和B均处于静止状态,如图所示.假设某次暴雨中,A浸透雨水后总质量也为m(可 视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数因减小为3,B、C间的动摩擦因数梭减小 8 为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,也保持不变.已知 A开始运动时,A离B下边缘白^距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=i0m/s2.求: (i)在0〜2s时间内A和B加速度的大小;(2)A在B上总的运动时间. 答案(1)3m/s21m/s2(2)4s 解析(1)在0〜2s时间内,A和B的受力如图所示,其中Ffi、FNI是A与B之间的摩擦力和正压力的大小,Ff2、FN2是B与C之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得 Ffi=(JFNI① FNI=mgcosd2) Ff2=区FN2③ FN2=FNI+mgcosO 规定沿斜面向下为正.设A和B的加速度分别为ai和a2,由牛顿第二定律得 mgsin0—Ffi=mai⑤ mgsin0—Ff2+Ffi=ma2⑥ 联立①②③④⑤⑥式,并代入题给条件得 ai=3m/s2⑦ a2=im/s2⑧ (2)在ti=2s时,设A和B的速度分别为vi和V2,则 vi=aiti=6m/s⑨ V2=a2ti=2m/s⑩ 2s后,设A和B的加速度分别为ai'和a2’.此时A与B之间摩才察力为0,同理可得 ai'=6m/s2? a2'=—2m/s2? 由于a2‘v0,可知B做减速运动.设经过时间t2,B的速度减为0,则有 V2+a2't2=0? 联立⑩??式得t2=is 在ti+t2时间内,A相对于B运动的距离为 121,2 x=2a1t1+v〔t2+,a1t2一 191,) 2a2t12+v2t2+^a2t22=12m<27m? 此后B静止不动,A继续在B上滑动.设再经过时间t3后A离开B,则有 1,.2_ l—x=(vi+ait2)t3+]ait32? 可得t3=1S(另一解不合题意,舍去)? 设A在B上总的运动时间t总,有 ,E=t1+t2+t3=4S 用v-t图像解:考点3:三个物体之间的物体相对运动问题 例6:★★★★[2017新课标III2520分】如图,两个滑块A和B的质量分别为m=1kg和m=5kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为(11=0.5;木板的质量为m=4kg,与 地面间的动摩擦因数为2=0.1。某时刻A、B两滑块开始相向滑动,初速度大小均为VO=3m/s。A、B相 遇时,A与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10m/s。求 2 (1) B与木板相对静止时,木板的速度; (2) A、B开始运动时,两者之间的距离。 解析: (1)滑块A和B在木板上滑动时,木板也在地面上滑动。设A、B和木板所受的摩擦力大小分别为f1、f2和f3,A和 B相对于地面的加速度大小分别为aA和aB,木板相对于地面的加速度大小为 a1。在物块B与木板达到共同速度前有 f1mg① 1 A f2mg② 1 B f3(mm+m)g③ 2 A B 由牛顿第二定律得 ma A A fma 2 B2i3 B⑤ fffma 1⑥ 设在ti时刻,B与木板达到共同速度,其大小为vi。由运动学公式有 vat iV0 Bi i⑦ vat i i⑧ 联立式,代入已知数据得 vi=im/s⑨ (2)在ti时间间隔内,B相对于地面移动的距离为 SBvoti2aBt 设在B与木板达到共同速度vi后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有 由式知,aA=aB;再由式知,B与木板达到共同速度时,A的速度大小也为vi,但运动方向与木板相反。由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从vi变到v2所用时间为t2,则由运动学公式,对木板有 在t2时间间隔内,B(以及木板)相对地面移动的距离为 在(ti+t2)时间间隔内,A相对地面移动的距离为 A和B相遇时,A与木板的速度也恰好相同。因此A和B开始运动时,两者之间的距离为 S0=SA+Si+SB联立以上各式,并代入数据得 s0=i.9m (也可用如图的速度-时间图线求解) 开始时AB间的距离就是A和B相对于C的相对位移,注意A相对于C的相对位移。 三个物体的运动问题的处理方法是变化成两个物体,先让两个物体相对静止,再让三个物体相对静止。 此题不能用动量守恒定律解决。 考点4:板块类运动问题的动量分析和能量分析 例7:★★★如图所示,长木板A放在光滑的水平面上,质量为m=2kg的另一物体B以水平速度v0= 2m/s滑上原来静止的长木板A的表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,则下列说法正确的是() A.木板获得的动能为2J B.系统损失的机械能为4J C.木板A的最小长度为2m D.A、B间的动摩擦因数为0.1 答案:D 板块类运动问题的动量守恒,功能分析 例8:★★★★[2010新课标10分】如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。重物质量为木板质量的2倍,重物与木板间的动摩擦因数为揖。使木板与重物 以共同的速度均向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短。求木板从第一次与墙碰 撞到再次碰撞所经历的时间。设木板足够长,重物始终在木板上。重力加速度为go 分析: 1 .木板与墙发生弹性碰撞后,木板向左以速度V0匀减速,重物以速度V0向右匀减速。 2 .木板与重物之间靠的是摩擦力提供加速度,因此由牛顿第二定律可以分析出,木板速度先减为 零。之后,重物开始做匀减速,木板做匀加速,最后二者共速了。再做匀速直线运动,直到与墙碰 撞。【过程分析清楚】 3.对木板和重物系统,写动量守恒定律可以求出最后的共同速度 V。 【基础】 4.对木板写动量定理,求出匀加和匀减的时间 【难点】 5.对木板用匀变速运动的位移公式,求出共速时木板距离墙的距离。然后利用匀速直线运动公式求 出匀速时间【易忽略】 【命题立意】本题以木板和重物系统以一定动量碰撞墙、反弹、再碰撞、再反弹……多过程直至静止于墙壁处,考查考生对多过程问题的分析,求出待求物理量。 【思路点拨】解答本题可按以下思路分析: 【规范解答】 木板第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速直线运动,直到静 止,再反向向右匀加速直线运动直到与重物达到共同速度v,再往后是匀速直线运动,直到第二次 碰撞墙。设木板的质量为m,重物的质量为2m,取向右为动量的正向,由动量守恒得 2.%一胞%=(2^+部)期① 设木板从第一次与墙碰撞到重物和木板具有共同速度v所用的时间为ti,对木板应用动量定理得 由牛顿第二定律得2^自=阳壮③式中a为木板的加速度。 1 ,1,2 I=宣曲—— 在达到共同速度v时,木板离墙的距离l为④ 2 / G=一 开始向右作匀速运动到第二次与墙碰撞的时间为⑤ v 木板从第一次与墙碰撞到第二次碰撞所经历的时间为“1+0⑥ 由以上各式得:3陶⑦ 1=也 【答案】,■二 【类题拓展】本题还可以用动量和能量的观点解答 另解:木板第一次与墙碰撞后,重物与木板相互作用直到达到共同速度v,由动量守恒得: 2.%-因%=(2m+济N① 工曳 解得:- 木板在第一个过程中,用动量定理,有:梢■一厘(一冷)=\"2憎/1② 1z】上一 —mV——附WQ=一必次笋 用动能定理,有:之2③ 木板在第二个过程中,匀速直线运动,有:^④ £=y 2.%4. 木板从第一次与墙碰撞到再次碰撞所经历的时间t=ti+t2=?甩+如岂J咫⑤ 【答案】V 考点:动量定理(求时间)、动量守恒定律、动能定理、牛顿第二定律、匀变速运动公式 点评:此题与2015新课标I卷的压轴题相似,应该是在此基础上改变而成的。此题属于板块类运动 问题用动量和能量的观点分析。这也是全国卷第一次考到此类问题。此题难度较大!此题放在二轮 复习讲。 此题可以设多问: (1)分析木板经历的运动过程。 (2)求木板与重物共速时的速度 (3)木板从第一次碰撞后到与重物达到共速所用的时间 (4)木板与重物达到共速时,木板离墙壁的距离 用v-t图像解: 课后巩固训练 1.★★(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知mA=6kg,mB=2 kg.A、B间动摩擦因数尸0.2.A物体上系一细线,细线能承受的最大拉力是20N,水平向右拉细线,下 述中正确的是(g取10m/s2)() A.当拉力0VFV12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受到A的摩擦力等于4N D.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止 答案CD 解析假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达 到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得: (inAg=mBa,解得 a=6m/s2 以整体为研究对象,由牛顿第二定律得: Fm=(mA+mB)a=48N 即当绳子拉力达到48N时两物体才开始相对滑动,所以A、B错,D正确. 当拉力F=16N时,由F=(mA+mB)a解得a=2m/s,再由Ff=mBa得Ff=4N,故C正确. 2. 玄出口图所示,质量分别为15kg和5kg的长方形物体A和B静止叠放在水平桌面上.A与桌面以及 A、B间动摩擦因数分别为川=0.1和^=0.6,设最大静摩擦力等于滑动摩擦力.问: (1)水平作用力F作用在B上至少多大时,A、B之间能发生相对滑动? (2)若F=30N时,A、B的加速度各为多少? (3)若F=60N时,A、B的加速度各为多少? 3. ★★★(2017黑龙江实验中学月考)如图所示,质量为m1的木块和质量为m2的长木板叠放在水平地面 2 上。现对木块施加一水平向右的拉力F。木块在长木板上滑行,而长木板保持静止状态。已知木块与长木 板间的动摩擦因数为也长木板与地面间的动摩擦因数为期且最大静摩擦力与滑动摩擦力相等,则() A.以>p2 B.1 D.若将F作用于长木板,当F>(口+闵(mi+m2)g时,长木板与木块将开始相对滑动 解析:对mi,根据牛顿运动定律有:F—wmig=mia;Km2,由于保持静止有:-mig—Ff=0,Ff<^(mi +m2)g,所以动摩擦因数的大小从中无法比较,故A、B错误;改变F的大小,只要木块在木板上滑动,则木块对木板的滑动摩擦力不变,则长木板仍然保持静止,故C错误;若将F作用于长木板,当木块与木板恰好开始相对滑动时,对木块,图mig=mia,解得a=〃ig,对整体分析,有F—(j2(mi+m2)g=(mi+ m2)a,解得F=((I+⑼(mi+m2)g,所以当F>((i+©(mi+m2)g时,长木板与木块将开始相对滑动,故D正确。 答案:D 4. ★★★(多选)(20i7云南玉溪期中)如图A、B两物体叠放在光滑水平桌面上,轻质细绳一端连接B,另 一端绕过定滑轮连接C物体,已知A和C的质量都是ikg,B的质量是2kg,A、B间的动摩擦因数是0.3,其他摩擦不计。由静止释放,C下落一定高度的过程中(C未落地,B未撞到滑轮),下列说法正确的 是() A.A、B两物体发生相对滑动 B.A物体受到的摩擦力大小为2.5N C.B物体的加速度大小是2.5m/s2 D.细绳的拉力大小等于i0N 解析:假设A、B相对静止,将A、B、C看作一■个整体,对整体有mcg=(mA+mB+mc)a,解得a=2.5m/s2,则A的加速度为a=2.5m/s2,水平方向上B给A的静摩擦力产生加速度,即有Ff=mAa,即得Ff=2.5N,而A、B间发生相对滑动的最大静摩擦力为Ffm=pmAg=3N>Ff,故假设成立,所以A、B相对静止,A错误,B、C正确;设绳子的拉力为FT,则根据牛顿第二定律可得FT=(mA+mB)a=7.5N,故D错误。 答案:BC 5. ★★★(多选)(20i7陕西西安高三质检)一长轻质木板置于光滑水平地面上,木板上放着质量分别为mA =ikg和mB=2kg的A、B两物块,A、B与木板之间的动摩擦因数都为尸0.2,水平恒力F作用在A 物块上,如图所示(重力加速度g=10m/s2,最大静摩擦力等于滑动摩擦力)() A.若F=1N,则物块、木板都静止不动 B.若F=1.5N,则A物块所受摩擦力大小为1.5N C.若F=4N,则B物块所受摩擦力大小为2N D.若F=8N,则B物块的加速度为1.0m/s2 解析:A与木板间的最大静摩擦力FfA=pAmAg=0.2X1X10N=2N,B与木板间的最大静摩擦力FfB= pmBg=0.2X2X10N=4N,F=1N 6.★★★如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平推力F=8N,当小 车向右运动的速度达到3m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg的小物块,物块 与小 (1) (2) 小物块放后,小物块及小车的加速度各为多大? 经多长时间两者达到相同的速度? 车间的动摩擦因数科=0.2求: t=3s小物块通过的位移大小为多少?(取g=10m/s2) (3)从小物块放上小车开始,经过 (4)为了使小物块不从小车上滑下,小车的长度至少为多少? 先相对运动后相对静止 7. ★★★(2017山东潍坊高三模拟)如图,一木块通过长度忽略不计的绳固定在小车的前壁上,小车表面光滑。某时刻小车由静止开始向右匀加速运动,经过2s,细绳断裂。细绳断裂后,小车的加速度不变,又经过一段时间,滑块从小车左端刚好掉下,在这段时间内,已知滑块相对小车前3s内滑行了4.5m; 后3s内滑行了10.5m。 (1)小车的加速度多大? (2)从绳断到滑块离开车尾所用时间是多少?(3)小车的长度是多少? 非板块类运动问题 解析:(1)设小车加速度为a,断裂时,车和物块的速度为Vi=ati=2a,断裂后,小车的速度v=vi+ at,小车的位移为: 1xi=vit+2at2, 滑块的位移为:X2=Vit 前3s相对位移有关系: iAx=xi—X2=2at2=4.5m 得a=im/s2 (2)细线断开时小车和物块的速度: vi=2a=2xim/s=2m/s 【关键!】设后3s小车的初速度为vi,,则小车的位移为: i Xi'=vi't+2at2 滑块的位移为:X2'=vit 得:Xiz—X2'=3vi'+4.5m—3Vi=i0.5m 解得:viz=4m/s 由此说明后3s实际上是从绳断后2s开始的,滑块与小车相对运动的总时间为:t总=5so (3)小车底板总长为:L=X车一X滑=vit总+2at总一vit总=2at总=2xiX25m=i2.5m 答案:(i)im/s2(2)5s(3)i2.5m 8. ★★★120i3江苏】如图所示,将小祛码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,祛码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若祛码和纸板的质量分别为mi和m2,各接 触面间的动摩擦因数均为卬重力加速度为g。 (i)当纸板相对祛码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对祛码运动,求所需拉力的大小; (3)本实验中,mi=0.5kg,m2=0.ikg,科=02码与纸板左端的距离d=0.1m,取g=10m/s2。若祛码移动的距离超 过l=0.002m,人眼就能感知。为确保实验成功,纸板所需的拉力至少多大? 祛码移动的距离指的是祛码匀加速和匀减速的位移和。 【解题指南】(1)求解纸板受到摩擦力可以勾画出叠加体模型。 (2)纸板相对祛码运动的关键就是两者加速度不同。 (3)祛码的运动为先加速再减速,总距离为l。 【解析】(1)祛码对纸板的摩擦力fi=pmig 桌面对纸板的摩擦力f2=|i(m+m2)g f=fi+f2 解得f=w(2m+m2)g (2)设祛码的加速度为ai,纸板的加速度为a2,则fi=miai F-fi-f2=m2a2 发生相对运动a2>ai 解得F>2(i(mi+m2)g(3)纸板抽出前,祛码运动的距离 纸板抽出后,祛码在桌面上运动的距离 纸板运动的距离d+xi』a26 l=Xi+X2 由题意知a1=a3,aiti=a3t2 解得F=2(i[m+(i+)m2]g 【答案】(1)(2m+m2)g 代入数据得F=22.4N (2)F>2[mm2)g (3)22.4N 9. ★★★[2014天津】如图所示,水平地面上静止放置一辆小车A,质量nA=4kg,上表面光滑,小车与地面 间的摩擦力极小,可以忽略不计。可视为质点的物块B置于A的最右端,B的质量m=2kg。现对A施加一个 水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B 粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到vt=2m/s。求: (1)A开始运动时加速度a的大小; (2)A、B碰撞后瞬间的共同速度v的大小; (3)A的上表面长度l。 【解题指南】解答本题时应从以下三点进行分析: (1)由牛顿第二定律求A的加速度。 (2)根据动量守恒定律求共同速度。 (3)结合动量守恒定律和动能定理求A的长度。 【解析】(1)以A为研究对象,由牛顿第二定律得 F=mia① 代入数据解得 a=2.5m/s2② (2)对A、B碰撞后共同运动t=0.6s的过程,由动量定理得 Ft=(mA+m)vt-(mA+RB)V③ 代入数据解得 v=1m/s④ (3)设A、B发生碰撞前,A的速度为VA,对A、B发生碰撞的过程,由动量守恒定律有 RAvA=(mA+m)v⑤ 从开始运动到与B发生碰撞前,由动能定理得: 1 2_ Fl=一mAvA⑥2 联立④⑤⑥式,代入数据解得 l=0.45m 答案:(1)2.5m/s(2)1m/s(3)0.45m 10. ★★★★[2015新课标I25】一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一 墙壁,木板右端与墙壁的距离为4.5m,如图甲所示。t=0时刻开始,小物块与木板一起以共同速度向右运动,直 至t=1s时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终 未离开木板。已知碰撞后1s时间内小物块的v-t图线如图乙所示。木板的质量是小物块质量的15倍,重力 加速度大小g取10m/s2。求: (1)木板与地面间的动摩擦因数W及小物块与木板间的动摩擦因数期 (2)木板的最小长度。 (3)木板右端离墙壁的最终距离。 【解题指南】解答本题应从以下四点分析: (1)可以利用图像求出小物块的加速度进而求得小物块与木板间的动摩擦因数理。 (2)碰撞前二者向右做匀减速直线运动,碰后物块继续向右做匀减速直线运动,木板向左做匀减速直线运动。 (3)物块恰好没有离开木板的临界条件为二者末速度相等、物块恰好运动到木板的最右端。 (4)木板的长度为二者的相对位移。 【解析】(1)规定向右为正方向。木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1, 小物块和木板的质量分别为m和M。由牛顿第二定律有 -w(m+M)g=(m+M)a1① 由图可知,木板与墙壁碰前瞬间的速度V1=4m/s,由运动学公式得 V1=V0+a1t1② 2 2 s0=v0t1+—a1tl③ 2 式中,t1=1s,s0=4.5m是木板碰前的位移,VO是小物块和木板开始运动时的速度。 联立①②③式和题给条件得国=0.1④ 在木板与墙壁碰撞后,木板以-VI的初速度向左做匀变速运动,小物块以V1的初速度向右做匀变速运动。设 小物块的加速度为a2,由牛顿第二定律有-展mg=ma2⑤ 由图可得a2=v^-v1⑥t2ti 式中*2=2S,V2=0, 联立⑤⑥式和题给条件得M2=0.4⑦ (2)设碰撞后木板的加速度为a3,经过时间A麻板和小物块刚好具有共同速度V3。由牛顿第二定律及运动 学公式得 坦mg+w(M+m)g=Ma3⑧ v3=-vi+a3At⑨ V3=vi+a2困⑩ 碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为S1=V1V3At? 2 小物块运动的位移为S2=V^-V2At? 2 小物块相对木板的位移为As=s-si? 联立⑥⑧⑨⑩??M,并代入数值得 As=6.0m? 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0m。 (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a4,此过程中小物块和木板运动的位移为肉由牛顿第二定律及运动学公式得 卬(m+M)g=(m+M)a4? 2 0-V3=2a4s3? 碰后木板运动的位移为s=s什s3? 联立⑥⑧⑨⑩???M,并代入数值得 s=-6.5m? 木板右端离墙壁的最终距离为6.5m。 答案:(1)0.10.4(2)6.0m(3)6.5m 用 v-t图像解更方便。
因篇幅问题不能全部显示,请点此查看更多更全内容