一..如图,四边形ABCD是平行四边形,BD是对角线,求证:AECF是平行四边形。
二:正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的
一个动点,PE⊥BC于E,PE⊥DC于F,
(1)当点P于点O重合时(图1),猜测AP于EF的数量关系及位置关系,并证明你的结论。
(2)如图2,当点P在线段DB上(不与点D,,O,B重合)时,探究(1)中的结论是否成立,若成立,写出证明过程,若不成立,请说明理由.
(3)当点P在DB的延长线上时,请将图3补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论,若不成立,请写出相应的结论。
三:如图,平行四边形ABCD中,AB⊥AC, AB=1,BC=√5,对角线AC,BD
相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F。1.在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由,如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
四:如图,在矩形ABCD中,E是BC上的点,F是CD上的点,已知S△ADF=S△ABE=1/3
S矩形ABCD,求证S△AEF/S△CEF的值。
五:如图一所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,
点A落在点F处,折痕为MN。求证:CN的长。
六:如图,在平行四边形ABCD中,∠ABC=75°,AF⊥BC于点F,交BD于点E,若DE=2AB,求证∠AED的度数,
因篇幅问题不能全部显示,请点此查看更多更全内容