Supercriticalfluidchromatography
MaryEllenP.McNally
16.1INTRODUCTION
Whatisasupercriticalfluid?
Thediscoveryofsupercriticalfluidsoccurredin1879,whenThomasAndrewsactuallydescribedthesupercriticalstateandusedthetermcriticalpoint.Asupercriticalfluidisamaterialaboveitscriticalpoint.Itisnotagas,oraliquid,althoughitissometimesreferredtoasadensegas.Itisaseparatestateofmatterdefinedasallmatterbybothitstemperatureandpressure.Designationofcommonstatesinliquids,solidsandgases,assumestandardpressureandtemperaturecondi-tions,orSTP,whichisatmosphericpressureand01C.Supercriticalfluidsgenerallyexistatconditionsaboveatmosphericpressureandatanelevatedtemperature.Figure16.1showsthetypicalphasediagramforcarbondioxide,themostcommonlyusedsupercriticalfluid[1].
Critical point
p
Liquid
Solid
Gas
1 atm
T
Fig.16.1.Phasediagramforcarbondioxidecriticaltemperature31.31Ccriticalpressure72.9atm.
ComprehensiveAnalyticalChemistry47S.AhujaandN.Jespersen(Eds)
Volume47ISSN:0166-526XDOI:10.1016/S0166-526X(06)47016-1r2006ElsevierB.V.Allrightsreserved.
561
M.E.P.McNally
TABLE16.1
Comparisonofphysicalpropertiesofliquids,gasesandsupercriticalfluidsPhasetypeGasat1atm,211CSupercriticalfluidLiquid
Source:VanWassenetal.[2]
Density(g/cm3)10–30.3–0.81
Diffusion(cm2/s)10À110À3–10À4o10À5Viscosity(g/cms)10À410À4–10À310À2Thecriticalpointofamaterialisthetemperatureandpressureconditionsatwhichtheliqiudstateceasestoexist.Asaliquidisheated,itbecomeslessdenseandstartstoformavaporphase.Thevaporsbeingformedbecomesmoredense,withcontinuedheatingtheliquidandvapordensitiesbecomeclosertoeachotheruntilthecriticaltem-peraturepointisreached.Atthissamepoint,theliquid-lineorphaseboundarydisappears.Thiscriticalpointwasfirstdiscoveredandre-portedin1822byBaronCharlesCagniarddelaTour.
Asafluid,thesupercriticalstategenerallyexhibitsproperitiesthatareintermediatetothepropertiesofeitheragasoraliqiud.InTable16.1,thephysicalpropertiesofliquids,gasesandsupercriticalfluidsarecompared[2].ExaminationofthevaluesinTable16.1makesthein-termediatenatureofasupercriticalfluidmoreobvious.Thedensityofasupercriticalfluidapproachesthelevelsofaliquidasdoesitsdiffusi-vity,whileitsviscosityissimilartoatypicalgas.Thesepropertiesofferrapidmovement(equilibration)asinagas,butsolvationorsolu-bilizationasfoundinaliquid.Thebestofbothworldsfromachromato-graphicviewpoint.Thisisbecauseasasolutetravelsthroughachromatographiccolumnthenumberofequilibrationpointsitreaches,asdefinedbytheVanDempterequation,defineshoweffectivetheseparationwillbe,eitherthroughthenumberoftheoreticalplates,N,theresolution,Rs,orthealphavalue,a,alsoknownasaseparationfactor.Foradetaileddescriptionofthetheoryofchromatography,thereaderisreferedtoSnyderandKirkland’stextModernPracticeofLiquidChromatography[3]orChapters12,14,15ofthistext.
Theeaseofsolubilizingtheanalyteisakeyfactoralso.Thisisbe-causetheeasieritistogetthesolutetothesepotentialequilibrationpointsinsidethechromatographiccolumnwhenthefluidismovingwithhighdiffusivity,thefastertheequilibrationsorseparationcantakeplace.Comparedtoagaswherethesolubilitiesoftheanalytesof
562
Supercriticalfluidchromatography
interestisalmostnon-existent,theliquid-likedensityofasupercriticalfluidoffersenhancedsolubilization.
Insupercriticalfluidchromatography,fluidsabovetheircriticalpointareusedasmobilephases.Thischapterdiscussestheprinciplesofoperation,mobilephaseconsiderations,parametersthatcanbead-justedinmethoddevelopmentaswellasanoverviewofinstrumenta-tionrequiredandafewpertinentexamplesfromcurrentliterature.Noteverythingcanbeillustrated,buttheadvantagesofthisdiversetechno-logywillbehighlighted.
16.2HISTORYOFSFC
Intermsofchromatography,thefirstindividualcreditedwiththeuseofsupercriticalfluidsasthemobilephaseisErnstKlesperwhenin1962hereportedontheseparationofmetalporphyrinsusingdense-gaschromatography(GC)orSFC[3].Butitwasnotuntilthe1980sthattheanalyticalcommunitytookholdoftheabilitiesandadvantagesofthetechniquewiththeadventofseveralcommercialinstrumentationventures.
Twoapproachesweretakenduringthistime,onebygaschromato-graphersandtheotherbyliquidchromatographers.Practicinggaschromatographerswhoexperimentedwithsupercriticalfluidchromato-graphyforitsenhancedsolvatingpowerspursuedthefirstapproach.Theycoupledsupercriticalfluids,ingeneralpurecarbondioxide;withsmallnarrowborecapillarycolumns,similartoleadingGCcolumnsofthetime.WiththatcouplingtheywereabletogetenhancedresolutionofcompoundsthataretoodifficulttoanalyzebyGC,becausetheywerenotsolubleinthenitrogenandheliummobilephasescommonlyusedinGC.
Thesecondapproachwastakenbypracticingliquidchromato-graphers.Theyroutinelydealtwiththermallylabile,highlypolarmole-culesandfrequentlysacrificedresolution,andspeedintheirsepara-tionsbecauseoftheaqueousmobilephasesthatwererequired.Withtheenhanceddiffusionanddecreasedviscosityofsupercriticalfluidsoverliquids,chromatographicrun-timeandresolutioncouldbeim-provedwhensupercriticalfluidswereused.Butsolubilityinpurecar-bondioxidemobilephases,whichhasthesolvatingpowersfromhexanetomethylenechlorideundernormaldensityranges,wasaproblemforthesepolarmolecules.Tocompensateforthis,experimentalistsstartedworkingwithmixedmobilephases.Thesemixedphaseswerebasedon
563
M.E.P.McNally
theadditionofpolarmodifiersoradditivestothecarbondioxidemobilephase.Similartothefirstapproach,thissecondgroupofscientistscontinuedtousethecolumnswithsimilardimensionstoliquidchroma-tography(LC)columnsprevalentinthe1980sthattheywerealreadyusing,i.e.,25cmby4.6mm;thecolumnswerealsofunctionalizedwiththecommonC-18,C-8andphenylphasesasfoundinLC.
Withboththeseapproachesrapidlybeingpursuedbyawidevarietyofacademic,industrialandinstrumentcompanylaboratories,thegrowthandpublicationrateinsupercriticalfluidchromatographydur-ingthemid-late1980sandtheearly1990swasexponential.Awidevarietyofapplicationsareavailablefromthattimeperiodaswellasseveralreferencesthatexplaintheadvantagesofoptimizingasuper-criticalfluidseparationusingalltheparametersavailableinSFCcom-paredtoGCorLC[4–8].
16.3BASICPRINCIPLESINSFC
ThemostcommonandwidelyusedsupercriticalfluidinSFCiscarbondioxide.Itisinert,inthatitisnon-toxicandnon-flammable,italsohasmildcriticalparameters,alowcriticaltemperatureof31.31Candacriticalpressureof72.8atm[1].Usingpure,supercriticalcarbondi-oxideeliminatesorganicsolventwasteandwithitwastedisposalcostsandconcerns.Thisisextremelypracticaladvantageintheindustrialenvironmentwherethegenerationofwasterequiresspecialhandlingandsignificantcost.
Beyondthispracticalconsideration,theadvantagesofSFCfromatechnicalperspectiveareinthewiderrangeofparametersthatcanbeoptimizedtoachievethebestseparation[4].Takenfromthesametwoapproachesdescribedabove,theparameterthatismostcommonlyad-justedtochangeresolutionandretentiontimeinGCisthetemper-ature,afterthattheonlychoiceanexperimentalistmighthaveistochangethecolumnusedforseparation.However,fromtheliquidchromatographersperspective,themobilephasecompositionistheprincipalcomponentthatcanbechangedtoeffectabetterseparation,themobilephasecomponentsaregenerallythesecondchoiceandthenfinallythechoiceofchromatographiccolumn.UsingsupercriticalfluidchromatographygivesalltheparametersoptimizedinLCaswellastheabilitytoseedrasticretentionchangesduetoatemperaturegradient,asinGC.Inaddition,SFChastheaddedparametersofpressureand/ordensitythatcanbeselectedtoachievethebestseparationconditions.
564
Supercriticalfluidchromatography
Fromanoverallperspective,boththetemperatureandpressureofthemobilephasecontrolthedensityorelutionpower.Achangeineithertemperatureorpressurechangesthemobilephasedensityandwillalterthechromatographicelution.ItshouldbenotedthatincreasingthetemperatureinSFCincreasestheretentiontime,generallyanun-desirableeffectandtheoppositeeffectthatisexhibitedinGC.Becauseofthis,reversetemperaturegradients,fromahightemperaturetoalowtemperature,areutilizedinSFCtodecreaseretention.Withde-creasingtemperature,densityofthefluidincreases;thesehigherden-sitymobilephasessolubilizetheanalytesofinterestandresultsinearlierelutionofthecompoundsofinterest.
ThesolvatingabilityofcarbondioxideinSFCissignificantwhencomparedtogasesusedinGC.Thisisbecauseasapurecomponent,achangeindensityofcarbondioxidecausesachangeinthematerial’sHildebrandsolubilityparameter.Incarbondioxide,thisrangeofsolu-bilitiescanbeconsideredequivalenttothesolubilitiesseenfromhexanetomethylenechloride.However,intermsofsolvatingmoder-atelypolarorhighlypolarmolecules,thissolubilityparameterrangeisnotsufficientandmodifiersoradditivestocarbondioxidemustbeincluded.Onceamodifierhasbeenaddedtothemobilephase,thecriticalparametersoftheoriginalsolventarenolongervalidandatwo-phasesystemcanexist.Asanexample,a10%methanolincarbondioxidesolutionhasacriticaltemperatureof51.51Cwithacriticalpressureof74.2atm.Thecriticalparametersofpuremethanolare240.51C,temperature,and78.9atm,pressure.Fromthesevaluesitcaneasilybedeterminedthatthereisnolinearrelationshipforcriticalpointchangewhenthecomponentsofatwo-phasesystemaremixedtogether.Whatshouldbenotedthoughisthatabovethecriticalpointofamixture,themobilephaseisonephase.Thisisextremelyimpor-tantinchromatography,anequilibrium-basedprocess,wherebydefi-nitionthemovementoftheanalyteisbetweentwophases.Ifoneofthephasesisanotapurecomponent,equilibriumisdifficulttoreproduceprecisely,theanalyteisnottransferringbackandforthbetweenthestationaryphaseandthemobilephase,butinsteadbetweenthreephases,thestationaryphaseandatwo-componentmobilephase.Thisdiscussionemphasizesthat,fromapracticalstandpoint,oneofthekeyconsiderations,oftenneglectedbyinitialpractitioners,istheneedtomaintainthemobilephaseaboveitscriticalpointatalltimesduringthechromatographicseparation.Thismaybedifficultwiththewiderangeofparametersthatareadjustedtooptimizeaseparation.
565
M.E.P.McNally
16.3.1
Parameteroptimization
Beingabletochangethedensity,viaeitherchangesinpressureortemperature,isthekeydifferenceinSFCoverGCandLCseparations.Typicaldensityrangesarefrom0.3to0.8g/mlforpurecarbondioxide.Table16.2showsdataobtainedfromISCO’sSF-SolverProgramforthecalculationofdensity(g/ml),HildebrandSolubilityParameterandarelativeequivalentsolventforpurecarbondioxideataconstantpres-sureof6000psi,approximately408atm.
ButtherealadvantageinSFCisnotjusttheabilitytoadjustthedensityofthemobilephasebuttheabilitytoadjustitfromtwodif-ferentdirections.Densitychangesachievedbyachangeinpressurecanyielddifferentseparationfactorsthendensitychangesachievedbyad-justingthetemperature.Thisoffersanadvantageinmethoddevelop-mentbySFCnotavailableinGCorLC.
BeyondthedensitychangesthatcanbeusedtocontrolmethodmodificationsinSFC,themobilephasecompositioncanalsobead-justed.TypicalLCsolventsarethefirstchoice,mostlikelybecauseoftheiravailability,butalsobecauseoftheircompatibilitywithanalyticaldetectors.Themostcommonmobilephasemodifiers,whichhavebeenused,aremethanol,acetonitrileandtetrahydrofuran(THF).Additives,definedassolutesaddedtothemobilephaseinadditiontothemodifiertocounteractanyspecificanalyte–columninteractions,arefrequentlyincludedalsotoovercomethelowpolarityofthecarbondioxidemobilephase.Aminesareamongthemostcommonadditives.
TABLE16.2
Calculationofdensity,HildebrandsolubilityparameterusingISCO’sSFsolverprogramatconstantpressureof6000psi(408atm)Temperature(1C)404955647073798594
Density(g/mL)0.9670.9370.9170.8860.8650.8550.8340.8150.785
Hildebrandsolubility8.2487.9027.8147.5547.3757.2877.1136.9446.694
EquivalentsolventC6H12C2H4CF4C8H16C6H16O2C4H10C8H18F2
CyclohexaneEthylene
Carbontetrafluoriden-Octanen-HexaneOxygenn-Butane
2-TrimethylpentaneFluorine
566
Supercriticalfluidchromatography
ModifiersandgradientcompositionsinLCareusedbroadly.
Agradientthatrunswith30–80%methanoloracetonitrileisnotuncommon.Thisamountofmodifierisgenerallynotneededinsuper-criticalfluidchromatographytoaffectthesameseparation.TypicalmodifiercompositioninSFCis1.0–10%andwouldachievehigherHildebrandSolubilityParameteradjustmentoverallthanthebroadergradientsfoundinLC.
16.3.2
Instrumentrequirements
Themajordifferenceinsupercriticalfluidchromatographyandcon-ventionalLCequipmentisthepumpingsystemsaswellasthesafetyfeaturesinstalledtomaintainhigherpressure.UniqueSFCequipmentdifferencesare:1.2.3.4.5.6.
Carbondioxidetankformobilephasesupply
a.EquippedwithapressurereliefvalueandrupturediskHigh-pressurepump
a.ChillertomaintainmobilephaseinliquidstateHigh-speedinjectorPressurerestrictor
a.High-pressuretubing
High-pressureflowcellforUVdetection
Solventcollectiondevicewithabilitytoventtoalaboratoryhoodorelephanttrunk.
Carbondioxideisusuallypurchasedinatank,insidethetankthemobilephaseexistsasaliquid.Typically,thetankdoesnotcomewithapressuregaugebutishookeduptoapressurereliefvalveandrupturedisk,whicharesetabovethetankpressureshouldatankleakoccur.High-pressurepumpsusedinSFCcancomeinavarietyoftypes;mostofthemaremodificationsofpumpsusedinLC.Piston,diaphragmandsyringepumpsareused.
Thepumpsdeliverthemostaccurateflowofthecarbondioxideifitispumpedintheliquidstate.Sincethatisthecase,ifthereisagreatdistancebetweenthetankandthepumpthenachillerisusuallyplacedsothatthetubingcontainingthecarbondioxidefromthetankcanbecooledmaintainingthecarbondioxideintheliquidstate.Mostcom-merciallyavailablepumpsoperateathighenoughpressuresthatthepumpheadsorpumpbodiesdonotneedancillarycooling,butoldermodelsfrequentlyrequiredachillerthatprovidedacirculationofcold
567
M.E.P.McNally
fluidstothepartsofthepumpwherethecarbondioxidehasapotentialtovaporizeoutoftheliquidstate.
Ahigh-speedinjectorisrequiredinsupercriticalfluidchromato-graphy.Thisistopreventlossofpressureduringtheinjectionprocess.Thereareavarietyofrestrictortypesthatcontrolthepressureofthefluidduringthechromatographicprocess.Eachmanufacturerhaspatentedtheirindividualrestrictiondevices.Itisbeyondthescopeofthistexttogointothedetailaboutalloftheserestrictors.However,bywayofexplanation,mostofthemechanicalrestrictorsthatareusedincommercialequipmentsoperateundertheprincipleofdecreasingavolumeoraspacethatthemobilephasemustpassthroughbysomemechanicalmeans.Thisdecreaseinvolume,ifmeteredaccurately,in-creasesthepressureinthesysteminacontrolledmanner.Asasafetyprecaution,foranyequipmentwhereelevatedpressuresareused,tub-ingshouldberatedwithasafetyfactorofatleast1.5timesthemaxi-mumpressuretheSFCsystemcanachieve.
Becausethedensityisacontrollingfactorinachievingthesepara-tion,maintainingtheelevatedpressureusedintheseparationisneces-saryuptothepointofdetection.ForUVmeasurements,thisrequiresahigh-pressurecellalsoratedtothemaximumpressuretheSFCsystemcanachievewithadesiredsafetyfactorof1.5times.Forotherdetectionmethods,i.e.,flameionizationdetectionandmassspectrometry,wherethesampleisnebulizedintothedetector,theoutputoftherestrictorisgenerallyrightatthenebulizationpoint.Thispositioningofthecolumnoutleteliminatesanypeakmergingthatcouldoccurunderlow-orno-pressuremovement.16.4
CURRENTEXAMPLES
Theexamplesillustratedhereinarenotall-inclusivebutshouldgivearepresentationoftheadvantagesofthetechniqueanditsmostcommonuses.
16.4.1
Chiralseparations
Theuseofsupercriticalfluidstoseparateenantiomersisoneofthemostimportanttasksinseveralareasofresearch,especiallypharma-ceuticalsandagrochemicals.Thisisbecauseitiswellknownthatthetwoenantiomericformsofamoleculecandisplaydramaticallydif-ferentbiologicalactivity.Theuseofsupercriticalfluidstoseparate,withhigherefficienciesandshorterretentiontimes,enantiomersis
568
Supercriticalfluidchromatography
extremelyadvantageousinthisdifficultwork.Intheirarticleentitled‘‘Chiralseparationofsometriazolepesticidesbysupercriticalfluidchromatography,Toribioandcoworkers,separatedsixtriazolepesti-cidesandshowedtheeffectsofdifferentorganicmodifiersontheres-olutionandretentionviak0value[9].Themodifierstheyexaminedweremethanol,ethanoland2-propanol.Theadditionofadditiveswasalsoexamined.Table16.3showssomeoftheirmodifierresults.Ingeneral,separationscouldbeconductedinlessthan10minandthebestmodifierfortheindividualseparationswascompounddependent.This
TABLE16.3
Valuesofcapacityfactorsandresolutionsobtainedfordiniconazole,
tetraconazole,hexaconazoleandtebuconazoleusingdifferentmodifiers[9]CompoundHexaconazole
Methanol(%,v/v)51015
Ethanol(%,v/v)51015
2-Propanol(%,v/v)51015
TetraconazoleMethanol(%,v/v)51015
Ethanol(%,v/v)51015
2-Propanol(%,v/v)51015
k10
k20
RsCompound
k10
k20
Rs5.355.680.672.332.591.021.431.610.875.146.232.412.012.281.141.191.320.654.385.010.542.712.900.481.451.450
Tebuconazole
Methanol(%,v/v)513.2314.741.28105.265.821.17153.113.421.03Ethanol(%,v/v)57.167.160105.045.040152.692.6902-Propanol(%,v/v)520.3622.530.98107.618.351.2153.543.911.15Diniconazole
Methanol(%,v/v)57.2912.446.08102.815.696.90151.633.435.87Ethanol(%,v/v)56.9710.634.55102.533.873.77151.372.083.112-Propanol(%,v/v)512.4621.061.23104.094.090152.042.040
4.305.231.55
2.052.411.271.061.831.024.265.293.052.242.842.491.681.982.065.868.754.983.285.464.012.403.693.43
569
M.E.P.McNally
isconsistentwiththeunderstandingofmodifierinteractionswiththesolutesandtheireffectontheoverallequilibriumbetweenthestation-aryandmobilephasesinSFCaspreviouslydescribed.Recalling,ac-ceptableresolution,Rs,valuesforquantitationpurposesaregreaterthan1.5,valuesthataregreaterthan1.5forresolutionarehighlightedinTable16.3.Figure16.2showsanexamplechromatogramofatypicalseparation.TheseseparationswereconductedonaHewlett-Packard1205Asupercriticalfluidchromatographequippedwithaphoto-diodearraydetector;detectionwasat220nm.AChiralpakAD25cmÂ4.6mmcolumnpackedwiththe3,5-dimethylphenylcarbamatederivativeofamylose,coatedona10mmsilicasupportwasused.ThemobilephasewascarbondioxidemodifiedasoutlinedinTable16.3foreachoftheindividualseparations.Otherchromatographicconditionswere351C,2ml/minflowrateandapressureof200bar(2960atm)(Fig.16.3).(Note:Becauseofthelowtemperatureoftheseparations,themobilephasewasnotlikelyinthesupercriticalstateforallofthemodifierconcentrationsexaminedinthisreport.)
16.4.2
Polymerseparations
Theadvantagesofsupercriticalfluidchromatographyforpolymersep-arationshavebeenillustratedintheliteratureformanyyears.Arecentexampleistheseparationoflong-chainpolyprenolsusingSFCwithmatrix-assistedlaser-desorptionionizationTOFmassspectrometry[10].Thegenericnamefor1,4-polyprenylalcoholsispolyprenol;thesecompoundsgenerallyhavesmallerpolymerizationchainsofless
200150100500
0(A)mAU246Min.810200150100500
0mAU(B)246Min.
810Fig.16.2.Enatiomericseparationofhexaconazoleat200bar,351C,2ml/minand10v/v2-propanol.(A)Withoutusingadditives;(B)using0.1%(v/v)tri-ethylamineand0.1%(v/v)trifluoroaceticacid[9].570
Supercriticalfluidchromatography
Fig.16.3.Enatiomericseparationat200bar,351C,2ml/min.(A)Tetraconazolewith4%(v/v)ethanol;(B)diniconazole15%(v/v)ethanol[9].
than30monomers.ChromatographicseparationofthesechainswasconductedusingaJascoSuper-201chromatograph.Thesystemhastwoseparatepumps,onedeliversthecarbondioxide,andtheotherdeliveredtheTHFmodifier.Thecolumntemperaturewas801C,thepressure,controlledbyabackpressureregulatorwascontrolledat19.6MPa.AnInertsilPh-3(25cmÂ4.6mm),5mmcolumnwasused.AflowgradientwasusedtointroducetheTHFmodifier,thisisnottyp-ical,butitispossiblewiththetwopumpsonthisinstrument.Theconsistentflowrateofthecarbondioxideis3.0ml/min;theTHFflowratestartedat0.8ml/minandwasadjustedover30min-to2.0mL/minandthenheldconstant.Figure16.4illustratestheresultantchromato-gramobtainedforEucimmiaulmoidesleaves,aplantproducingfibrousrubber;over100-mer(MW:6818)componentswerecompletelysepa-ratedusingtheconditionsdescribedabove.
16.4.3Highthroughputscreeningofpharmaceuticals
AtAbbottLaboratories,HochlowskiandcoworkersusedpreparatoryscaleSFCtoscreentheoutputofhighthroughputorganicsynthesis(HTOS)forpuritylevelsandclassifychemicalstructuresintolibrariesofsimilaranalogs[11].ThesescientistsusedaBergerInstrumentsSFCself-modifiedforthisparticularuse.Figure16.5showstheschematicofthismodifiedsystem.Inthisapplication,theauthorsreportedaddingSFCcapabilitytotheirrepertoireofinstrumentationtosolvetheiranalyticalchallenges.Figure.16.6showsthecomparisonofatypicalreactionmixtureanalyzedbybothhighperformanceliquidchromato-graphy(HPLC)andSFC.
571
M.E.P.McNally
38
100
20
01020Min
304050Fig.16.4.SFCchromatogramoflong-chainpolyprenolsinE.ulmoidesleaves.ThesamplehadMn3.99Â103(calibratedagainstcis-1,4-polyisoprenestand-ards)andMw/Mn1.41.Thenumbersinthechromatogramrepresentdegreesofpolymerizationforpolyprenolhomologues[10].
Autosampler
CO2 deliverysystem
Customsoftware
Methanol wash
system
Dual armfraction collector
Fig.16.5.Preparativesupercriticalfluidchromatographicsystem,customizedforhighthroughputorganicsynthesis(HTOS)screening[11].
Actualoperatingconditionscanbefoundinthefigurecaption.AgivenlimitationofSFC,relativetoHPLC,asdescribedistheabilitytodissolvesamplesinasolventsystemcompatiblewiththemethanol/carbondioxidemobilephase.Forthisparticularmobilephase,othercompatiblesamplediluentsthatworkedeffectivelyarepuremethanol,
572
Supercriticalfluidchromatography
1000750mAU50025000
(a)11008250mAU65002750
0
(b)
0
1
2
31
3
4
1
2
3
54
Minutes2
6
7
8
9
10
1
23
4
45Minutes
678
Fig.16.6.(a)HPLCchromatogramsforreactionmixtureA.HPLCconditions:C18(20Â100mmNova–PakTM),gradient5–95%acetonitrile/water,with0.1%TFA;(b)SFCchromatogramforreactionmixtureA.SFCconditions:Diolcolumn(21.2Â150mm,BergerInstruments),gradient5–60%Methanolwith0.5%dimethylethylamineincarbondioxide[11].
ormixturesofeithermethanolandacetonitrileormethanolanddi-chloromethane.Dimethylsulfoxide,DMSO,ontheotherhandwasnotcompatiblewiththecarbondioxidemobilephaseused.
16.5CONCLUSIONS
Supercriticalfluidsofferpropertiesintermediatetogasandliquids.Assuch,supercriticalfluidchromatographyisanalternativetechniquetobothLCnotliquidandorGC.Thedistinctadvantagesofsupercriticalfluids,becauseofgaslikedensitiesyieldsfasterchromatographicelu-tionandthereforeshorteroverallruntimesthaninLC.Greatersol-vatingpowerthangases,makesitmoreapplicabletoawidervarietyofanalytesthatcantypicallybeanalyzedbyGC.AbilitytooptimizeawidervarietyofparametersthanGCorLCisalsoadvantageous;den-sity,temperatureandpressure,mobilephasecomposition,gradientel-utionandtheadditionofadditivestothemobilephaseareallavailable.But,thechallengetotheanalyticalchemistortechnicaloperatoristhatthereismoretounderstandtoutilizethetechniquecorrectly,workin
573
M.E.P.McNally
theoptimizedrangeofaphasediagramanddealwiththehigher-pressureequipmentandsafetyprecautionsthatarenecessary.Becauseofthiscomplication,SFChasnotreplacedLCorGCinthemainstreamanalyticallaboratoryalthoughithasthecapabilitytodoso.
REFERENCES
SupercriticalFluidExtraction:PrinciplesandPractice,M.A.McHughandV.Krukonis,2ndEdition,Butterworths-Heinemann,1994,608.ISBN:0750692448
2U.VanWassen,I.SwaidandG.M.Schneider,Angew.ChemieInt.Ed.
Engl.,19(1980)575.
3IntroductiontoModernLiquidChromatography,L.R.Snyderand
J.J.Kirkland,2ndEdition,WileyInterscience,1979
4SupercriticalFluidsinChromatographyandExtraction,R.M.Smithand
S.B.Hawthorne,Elsevier,1997,414,ISBN:0-444-82869-95J.A.CrosandJ.P.Foley,Anal.Chem.,62(1990)378–386.
6M.E.McNallyandJ.R.Wheeler,J.ofChromatogr,477(1988)53–63.7M.E.McNallyandJ.R.Wheeler,LC/GCMagazine,6(9)(1988).8M.E.McNally,Anal.Chem.,67(9)(1995)308A–314A.
9L.Toribio,M.J.delNozal,J.L.Bernal,J.J.JimenezandC.Alonso,
J.ChromatogrA.,1046(2004)249–253.
10T.Bamba,E.Fukusaki,Y.Nakazawa,H.Sato,K.UteT.Kitayamaand
A.Kobayashi,J.Chromatogr.A.,995(2003)203–207.
11J.Hoxhlowski,J.Olson,J.Pan,D.Sauer,P.SearleandT.Sowin,
J.Liq.Chromatgr.&Rel.Tech.,26(3)(2003)3333–3354.1
REVIEWQUESTIONS1.
DescribetheparametersthatareavailabletothepracticingchromatographerinLC,GCandSFCtoconductmethoddevelop-mentandobtainthebestresolutionofthecomponentsofamixture.
WhatistheprincipalrequirementinSFCinstrumentationtocon-trolthepressure?
Definethecriticalpointofasubstance.
Describethechangethatoccursinthecriticalpointofasubstanceifasecondcomponentisadded.
WhatisthemainadvantageofSFCoverLCandGC?Howisthisobtained?
2.3.4.5.
574
因篇幅问题不能全部显示,请点此查看更多更全内容