(一)(五个方面)
一、非均匀分组(分步组合法)
“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。 例1、7人参加义务劳动,按下列方法分组有多少种不同的分法
①分成3组,分别为1人、2人、4人;
②选出5个人分成2组,一组2人,另一组3人。
12解:①先选出1人,有C7种,再由剩下的6人选出2人,有C6种,最后由剩下的4人为一1244组,有C4种。由分步计数原理得分组方法共有C7C6C4105(种)。
23 ②可选分同步。先从7人中选出2人,有C7种,再由剩下的5人中选出3人,有C523种,分组方法共有C7C5210(种)。也可先选后分。先选出5人,再分为两组,由分步523计数原理得分组方法共有C7C5C3210(种)。
二、均匀分组(去除重复法)
“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)
例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法
33解:可选分同步。先选3人为一组,有C7种;再选3人为另一组,有C4种。又有2组都33C7C4是3人,每A种分法只能算一种,所以不同的分法共有。 70(种)2A22233C6C3 也可先选后分。不同的分法共有C。 70(种)2A267
㈡部分均匀分组(去除重复法)
例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法
2224解:分成2、2、2、4个元素的4堆,分别有C10、C8、C6、C4种,又有3堆都是2个
1 排列组合问题之分组分配问题(共3页)
1
元素,每A33种分法只能算一种,所以不同的分组方法共有
22C10C82C64。 C43150(种)3A3 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m个组的元素是
m均匀的,都有Am种顺序不同的分法只能算一种分法。】
三、编号分组
㈠非均匀编号分组(分步先组合后排列法)
例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法
32A2420(种)解:分组方法共有C72C5。
㈡部分均匀编号分组(分组法)
例5、5本不同的书全部分给3人,每人至少1本,有多少种不同的分法
解:分两类。①一类为一人3本;剩两人各1本。将5本书分成3本、1本、1本三组,再分
11C2C13给3人,有C②另一类为一人1本,剩两人各2本。将书分成2本、A360种分法。2A2351C32C1390种分法。共有6090150种分法。 2本、1本三组,再分给3人,有C2A3A225例6、 已知集合A含有4个元素,集合B含有3个元素。现建立从A到B的映射
f:AB,使B中的每个元素在A中都有原象的映射有多少个
21C2C解:先把A中的4个元素分成3组,即2个、1个、1个,有C21种分组方法,再把BA22421C2C13中的3个元素全排列,共有CA336种分组方法。因此,使B中的元素都有原象2A224的映射有36个。
(二)(五个方面)
一、平均分堆问题倍缩法(或缩倍法、除倍法、倍除法、除序法、去除重复法)
1、 从7个参加义务劳动的人中,选出6个人,分成两组,每组3人,有多少种不同的分法 2 排列组合问题之分组分配问题(共3页)
2
3333C7C46C6C3 答案:。 70(种)或C7270(种)2A2A22、6本不同的书平均分成三堆,有多少种不同的方法
222C6C4C2 答案:。 15(种)3A3附:6个班的数学课,分配给甲、乙、丙三名数学教师任教,每人教两个班,有多少种不同的分派方法
222 答案:C6C4C290(种)。
3、6本书分三份,2份1本,1份4本,有多少种不同分法
11C6C54 答案:。 C415(种)2A2
二、有序分配问题逐分法(或分步法)
4、①有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )
A、1260种 B、2025种 C、2520种 D、5040种
211 答案:C10C8C72520(种)。选C。
②12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )种。 A、CCC4124844种
B、3CCC种 C、CCC41248444124833种
44C12C84C4种 D、3A3 答案: 选A。
三、全员分配问题先组后排法
5、 ①4名优秀学生全部保送到3所学校,每所学校至少去1名,不同的保送方案有多少种
23 答案:C4A336(种)。
②5本不同的书,全部分给4个学生,每个学生至少1本,不同的分法种数为( )。 A、480种 B、240种 C、120种 D、96种
24 答案:C5A4240(种)。选B。
四、名额分配问题隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法)
6、10个优秀学生名额分到7个班级,每个班级至少1个名额,有多少种不同分配方案 3 排列组合问题之分组分配问题(共3页)
3
6 答案:C9。 84(种)
五、限制条件分配问题分类法
7、 某高校从某系的10名优秀毕业生中选4人,分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案
答案:甲、乙有限制条件,按照甲、乙是否参加分四类。①甲、乙都不参加,有派遣方
433案A8种;②甲参加乙不参加,先安排甲有3种,再安排其余学生有A8种,共有3A8种;③3乙参加甲不参加,有3A8种;④甲、乙都参加,先安排甲乙,有7种(树图法),再安排其433222余学生有A8种,共有7A8种。综上,不同的派遣方法总数为A83A83A87A84088种。
4 排列组合问题之分组分配问题(共3页)
4
因篇幅问题不能全部显示,请点此查看更多更全内容