AlongaHorizontalWellDuring
InjectionPeriod
GuohuaGao,SPE,ChevronCorp.;andYounesJalali,SPE,Schlumberger
Summary
Thispaperpresentsamathematicalmodeldescribingthevariationoftemperaturealongthelengthofahorizontalwellduringtheprocessofwaterinjection.Themodelisobtainedfromatheoret-icaltreatmentaccountingforbothmasstransferandheattransferbetweenahorizontalwellandareservoir.Thetreatmentis1Dlinearinthewellboreand1Dradialinthereservoir.Anumericalalgorithmforreservoirtemperaturecalculationisproposedandananalyticalsolutionisderivedonthebasisofsomerealisticas-sumptions.Theanalyticalsolutioncanbeusedtogeneratethetemperatureprofileinahorizontalinjectionwellforanyassumeddistributionofinjectionprofilealongthelengthofthewell,in-cludinginjectionprofilethatisuniform,skewedtowardtheheelorthetoe,orexhibitssomediscontinuity(e.g.,leakoffintoahighpermeabilitystreakorfracture).Thispaperalsopresentscompari-sonoftemperatureprofilesobtainedwiththeanalyticalsolutiongiveninthispaperandthoseobtainedwithanumericalreservoirsimulatorwithtemperatureoption(ECLIPSE),whichshowsthattheanalyticalsolutionyieldsreasonabletemperaturepropagationprofilesalongthewellbore.Theeffectsofinjectionrateandtheinjectionprofileareanalyzed,andaquickin-situinjectionpattern-recognitionmethodisproposed.Finally,examplesaregiventoshowthepracticalapplicationofthetheoreticalmodel.
Introduction
Useofhorizontalwellsforinjectionpurposesisnowcommon-place.Thisisbecausematuringfieldsproduceincreasingamountsofwater,andhorizontalwellsenabledisposaloflargevolumesoffluid.Therefore,disposalobjectivescanbemetwithafewernum-berofwells.Thisisimportantinoffshoreoperations,inwhichwellnumbersarelimitedbecauseofslotconstraintsontheplatform.Intermsofpressuremaintenance,horizontalwellsarealsoattractive.Insaturatedreservoirs,inwhichvoidagereplacementisfundamentaltoachieveagoodrecoveryfactor,horizontalwellshelpachieveinjectionvolumescommensuratewithproductionvolumesinthefield.Therefore,theyareinstrumentalinreservoirmanagement.Finallyintermsofrecovery,horizontalwellsareeffectiveinachievingagoodvolumetricsweep,particularlyinthickreservoirsinwhichgravitationalforcesandstratificationtendtounderminesweep.
Measurementofinjectionprofileinhorizontalwellsisalsoacommonrequirementforassessingtheefficiencyofdrillingorcompletionprocess,cleanuporstimulationprocess,andinjectionorrecoveryprocess.
Injectionprofileinhorizontalwellscanbeestimatedwith“pro-ductionlogging”technology,butthismayrequirecoiledtubingtoaccessthefulllengthofthewell.Evenwithcoiledtubing,therearepracticallimitsofhowfarthewellcanbelogged(e.g.,currentlyoftheorderof1to2km).“Interventionless”meansofdeterminingtheinjectionprofileinhorizontalwellsarethereforeofinteresttooperators.Afeasibleinterventionlessapproachinhorizontalwellsisefficientcompletiondesignsfordeploymentofthefiberoptic
Copyright©2008SocietyofPetroleumEngineers
Thispaper(SPE96260)wasacceptedforpresentationatthe2005SPEAnnualTechnicalConferenceandExhibition,Dallas,9–12October,andrevisedforpublication.Originalmanuscriptreceivedforreview15July2005.Revisedmanuscriptreceivedforreview28March2007.Paperpeerapproved20May2007.
February2008SPEReservoirEvaluation&Engineering
line.Therearepublishedcasesintheliteraturewithfiberoptic-distributedtemperaturesensorsdeployedinhorizontalwells.Thesearedeployedeitherthroughanextendedtailpipe(i.e.,“stinger”completion)(Al-Asimietal.2002/2003),orthroughagrooveinthesandscreen.
Thetechnologyformeasurementofdistributedtemperatureonaperiodicorcontinuousbasisisawell-establishedtechnologyandhasbeenwidelyappliedtoreservoirandproductionmonitoring(Brownetal.2000,2003,2006;LaurenceandBrown2000;Ou-yangandBelanger2006;Nathetal.2007;Lee2006;Johnsonetal.2006).
Asthereisongoingeffortinimprovingthedeploymenttech-nologyofsuchsensorsinhorizontalwells,itisthereforeappro-priatetoinvestigatetheinterpretationmethodologythatisrequiredtoinferthecharacteroftheinjectionprofilefrommeasurementsoftemperatureprofile.
Inferringinjectionprofilebasedonmeasuredtemperaturedataisaninversionproblem(Tarantola1982,2004).Onemethodofestimatinginjectionprofileandrockpropertiesonthebasisofmeasuredtemperaturedataistofollowtheproceduresimilartohistory-matchingproductiondatawithapplicationsofnumericalreservoirsimulationwitheithertherandomizedmaximumlikeli-hood(RML)method(Oliver1996;Reynoldsetal.2004;Gaoetal.2006)ortheensembleKalmanfilter(EnKF)method(Zafarietal.2005;GuandOliver2006;Wenetal.2006;Evensen2007).Al-thoughnumericalthermalreservoirsimulationisavailablenowa-days,onelimitationofapplyingthermalreservoirsimulationisthatitisveryexpensivetoobtainsatisfactorynumericalresults,whichrequireveryfinegrids,especiallynearthewellbore.TheLBFGSalgorithm,aquasi-Newtonalgorithm,hasbeenprovedanefficientandrobustoptimizationalgorithmforlarge-scalehistory-matchingproblems(Zhang2002;Gao2005;GaoandReynolds2006).TheLBFGSalgorithmandotherquasi-Newtonalgorithmsrequirecalculationofthegradientinformationofhistory-matcheddatawithrespecttomodelparameterstobeadjustedduringtheprocessofhistorymatching.Thegradientinformationcanbeef-ficientlycalculatedwiththeadjoiningmethod(Lietal.2000;Li2001;Zhang2002).However,developmentoftheadjoiningalgo-rithmsforthermalreservoirsimulatorsisquitetedious.
Anothermethodofestimatinginjectionprofileonthebasisofmeasuredtemperaturedataistodevelopanalyticalorsemi-analyticalmodelsoftemperaturepropagationduringwater-injectionperiodortemperaturerecoveryduringshut-inperiod.Goodworkhasbeendonebyauthorswhohaveconsideredtheinterpretationofmeasuredtemperaturedatafromtheshut-inpe-riodtoestimatetheinjectionprofile.Thismethodoriginatedinworkdoneonverticalwellsandisbasedontheconceptthatthedegreeoftemperaturerecovery(duringshut-in)observedacrossvarious“sandface”intervalsisinverselyrelatedtotheefficiencyofinjectionintothatinterval(Nowak1953).Theseworkshavebeenadaptedtohorizontalwells(BuiandJalali2004).Thereisalsoaninnovativemethodofestimatingtheinjectionprofilefromtem-peraturedataacquiredimmediatelyafterashut-inperiod,inventedandreportedbyBrownetal.(2003).However,shut-inisnotadesirableeventininjectionoperations,especiallyinloosesands,becauseoftheproblemofbackflowoffinesandpluggingofthecompletion.
Severalmodelsforpredictingtemperaturedistributionalongverticalwellbores(Ramey1962;Alvesetal.1992;Izgecetal.
131
2007;Mendesetal.2005)andhorizontalwellbores(Yoshiokaetal.2005a,2005b;Romeroetal.2005;OuyangandBelanger2006)havebeeninvestigated.Thesemodelseitherconsideronlyheatorenergyexchanges(heatconduction)betweenwellboreandreservoirbutnomassexchangesexceptatthebottomofthewell-bore,orassumethatthereservoirtemperaturedistributionisinasteadystateandsingle-phaseflowinthereservoir.Suchtreatmentsarevalidforwellsperforatedinaveryshortintervalatthebottomorvalidforproductionwells.However,theyarenotvalidforinclinedorhorizontalinjectorsbecausethetemperatureofinjectedfluidisquitedifferentfromthereservoirtemperature,andtheinjectedfluidwilldisturbthetemperaturefieldinareservoirsig-nificantly.Moreimportantly,theinvadedfluidhasdifferentther-malpropertiesthantheformationfluid,andtheshockwave(dis-continuity)ofwaterandoilflowrateatthewaterfrontmakethemodelmorecomplicated.
Ontheotherhand,manyauthorsinvestigated1Dtemperaturemodelinareservoirintowhichhotwaterorcoldwaterisinjected(Sumnu-DindorukandDindoruk2006;Kocabas2006;Nasrabadi,etal.2006;Platenkamp1985;Rouxetal.1980).Inthesemodels,thewellboretemperatureisassumedknownanddoesnotchangewithtime.Thisisnotthecaseofhorizontalinjectorsinwhichwellboretemperatureisafunctionofbothtimeandlocation(dis-tancefromtheheel).
Theobjectiveofthispaperistodevelopamathematicalmodelofpredictingwellboretemperaturethatispracticalforrealfieldin-situapplication.Oneadvantageofthemodelisthattheinjectionprofilecanbeestimatedbeforeanyshut-in.Moreimportantly,thetemperaturedistributioninthereservoiratthetimeofshut-incanbepredictedwiththismodel,whichprovidestheinitialconditionfortemperaturerecoveryanalysisforthesubsequentshut-inpe-riod.Althoughthemodelcanbealsousedastheforwardmodelforwellboretemperatureinversiontodeterminehowinformationaboutinjectionprofilemaybeobtainedfromanalysisoftempera-turedataduringtheinjectionperioditself,weonlyfocusonthedevelopmentoftheforwardmodelinthispaper.
PhysicalDescription
Letusassumewehaveabox-shapedreservoirwithahorizontalwellplacedinthemiddle.Also,letusassumetherearelayersonthetopandbottomofthisbox,whichcanconductheatbutnotfluid.Thereservoiranditsboundinglayersareinthermalequi-libriumconformingtoastaticgeothermalgradient.(Typicalvaluesare1to2°C/55m)Atinitialcondition,therefore,thereisacon-stanttemperaturealongthelengthofthehorizontalwell.Now,letussupposethiswellisfullysealedfromthereservoir.Ifweexposetheheelofthewelltoafluidstreamthatiscoolerthanthereser-voir,thisstreamwillflushthewell,andatemperatureprofilewillgetestablishedinthewellthatrisesfromthetemperatureattheheeltotheinitialreservoirtemperaturesomewherebetweentheheelandthetoe.Thistemperaturechangeissensedatthewell-bore-reservoirboundary,resultinginheatfluxfromthereservoirtowardthewellbore.Thisradialheatfluxwillgraduallypropagateintheaxialdirectionfromtheheeltowardthetoeofthewell.Asimilarphenomenonoccursifweallowfluidinfluxfromthewell-boretothereservoir,exceptthattheheatfluxintheoppositesensewillbeattenuated,comparedwiththecasewhenthereisnofluidinflux.Forthegeneralproblem,therefore,thereisalinearflushingofacoldfluidalongthewell,triggeringheatfluxfromthereser-voirtothewellandanattenuationofheatfluxthatiscausedbydistributionoffluidinfluxfromthewellboreintothereservoir(masstransfer).Theconditionsunderwhichthisscenarioholdsarebroadlythefollowing:theendsofthewellarefarfromthereser-voirboundaries;andtheperiodduringwhichthesolutionholdsisequaltothetimeittakesforthelocationofthetemperaturefrontofinjectedfluidtoapproachthebedboundaries.
Tosimplifythemathematicalproblem,wemakethefollow-ingassumptions:
•Massandheattransferinreservoirinthedirectionparalleltothewellboreisneglected.
•Injectionprofileisassumedconstantwithtime.•Injectionispiston-like,andformationisisotropic.
132
•Injectedfluidisincompressible,andthereservoirtemperat-urefrontiswithintheupperandlowerboundarybedsofthereservoir.ReservoirTemperatureModel
EnergyAnalysisforTwo-PhaseRadialFlow.Letusconsideratinyradialelementbetweenrandr+drofunitlength,asshowninFig.1.
Thetotalheatstoredinthiselementiscomposedofthreeterms:theheatstoredinthewaterphaseQt),theheatstoredintheoilphaseQwס2rdrsw(x,r,t)cwT(x,r,t),andtheheatstoredintherockoסQ2rdr[1−sw(x,r,t)]coT(x,r,rס2rdr(1−)crT(x,r,t),thatis,
Qres==Q2wr+drTQo͑x+,Qr,r
t͓͒sw͑x,r,t͒...........................͑cw−co͒+co+͑1−͒cr͔,
(1)inwhichT(x,r,t)isthetemperatureinthereservoir;isporosity;co,cw,and3crare,respectively,theheatcapacityofoil,water,androck(J/(m.K));andsw(x,r,t)iswatersaturation.
Letqw(x,r,t)andqo(x,r,t)denote,respectively,thewateroilvolumeflowrateinreservoirandqrѨT
and
T͑x,r,t͒ס2denotetheconductiveheatinwardflux.TheenergyconservationѨrequationforthisradialelementis:
ѨQres
Ѩt
=qrin−qrout,....................................(2)inwhichqrinandqroutdenotethetotalheatfluxintoandoutofthetinyradialelementdr.qheatflux,carriedbyriniscomposedoftwoterms:theconvec-tivetheoilandwaterflowingintotheelementthroughtheinnersurfaceatr,[ctheconductiveheatfluxintowqthew(x,r,t)+ctinyelementoqo(x,r,t)]T(x,r,t),andthroughtheoutersurfaceatr+dr,qT(x,r+dr,t).qtheconvectiveheatfluxcarriedroutisalsocomposedoftwoterms:bytheoilandwaterflowingoutoftheradialelementthroughtheoutersurfaceatr+dr,[cwqw(x,r+dr,t)+coqo(x,r+dr,t)]T(x,r+dr,t),andtheconductiveheatfluxoutofthetinyelementthroughtheinnersurfaceatr,qT(x,r,t).qrin=͓cwqw͑x,r,t͒+coqo͑x,r,t͔͒T͑x,r,t͒+qT͑x,r+dr,t͒,qrout=͓cwqw͑x,r+dr,t͒+coqo͑x,r+dr,t͔͒T͑x,r+dr,t͒
+qT͑x,r,t͒,
qѨT
T͑x,r,t͒ס2r
,inwhichisthethermalconductivityformation(J/(m.K.h)),Ѩrofandweassumethatitisnotaffectedbythepresenceofoilorwaterinporevolume.
SubstitutingthepreviousequationsandEq.1intoEq.2yields:Fig.1—Massandheatflowinradialdirection.
February2008SPEReservoirEvaluation&Engineering
͓sѨT
w͑cw−co͒+co+͑1−͒cr͔
Ѩt+͑c͒TѨsww−coѨt=
1
2rͫ2ѨѨrͩrѨTѨrͪ−cѨ͑qwT͒Ѩ͑qoT͒wѨr−co
Ѩrͬ.....(3)Forpiston-likeinjection,thereservoircanbedividedintotwo
mainflowregimes:waterflowregime(rw ͑1−ss,....................(4) or−wi͒representsthepositionofwaterfrontatlocationxandtimet.Inthewaterflowregime(r)סqw inwhichawססIn0.theqoilflow(1−sregimeor)(cw−c(ro)+co+cr(1−). (x,r,t)decreaseswf(x,t) ͩѨTͪcoѨ͑qoT͒oѨt=rѨrrѨr−2rѨr,.....................(6)inwhichaoסswi(cw−co)+co+cr(1−).Theinitialconditionisgivenby T͑x,r,0͒=TR........................................(7)Theboundaryconditionsarespecifiedas T͑x,rw,t͒=Tw͑x,t͒,..................................(8)and limr→ϱ T͑x,r,t͒=TR.....................................(9) Letrrxt Dסr,xDס,andtDס2denote,respectively,thedimen-sionlessradius,wLdimensionlesscwrdistancew fromtheheel,anddimen-sionlesstime.BothEqs.5and6canbenormalizedas ␣ѨTѨ2T1ѨT2Ѩ͑T͒Ѩt=2+−.......................(10)DѨrDrDѨrDrDѨrDInthewaterflowregime,␣ס␣awcwqwi wס,andס;whereasintheoilflowregime,␣ס␣סacwwס 4ocoqo owaterinjectionrate. c,andoס.wisthedimen-sionlessw4DiscontinuityattheWaterFront.Becausewatersaturationswaterflowrateqw,spatialdomainatw,andoilflowrateqthewaterfront,(i.e.,o,arediscontinuousinthe␣w␣o,andwo),such discontinuityinthoseparametersmaycausediscontinuityofT,ѨT Ѩr, andѨ2T 2.TisacontinuousfunctionofrbecausetermѨtheconductive isr includedinthemodel.Otherwise,thecontinuityofTinthespatialdomaincannotbeguaranteed.FromEqs.10and11,itis obviousthatѨ2T 2isnotcontinuousatthewaterfront.continuityofѨHowever,the ther temperaturegradientisnotclear.Tosolveequations,itiscriticaltoknowwhetherѨT the Ѩr iscontinuousorthedifferenceofѨT acrossthewaterfrontifitisLetusconsiderѨrnotcontinuous. atinyradialrѨrelementbetweenrwf(x,t)and wf wf(x,t+⌬t)forasmall⌬t,⌬r≈⌬t.Theheatsstoredinthistinyelementattimet(sѨtwסswi)andtimet+⌬t(swס1−sor)are,re-February2008SPEReservoirEvaluation&Engineering spectively,Qt͒ס2arѨrwf res͑owf͑x,t͒ѨT⌬t,andQres͑t+⌬t͒ס2awrwf ͑x,t͒Ѩrtwf TheѨtT⌬t.heatfluxesintoandoutofthetinyelementintervalof⌬tare,respectively,qqѨT duringthetime rinסcwwT+2r Ѩr⌬t,rסrwf ͑x,t+⌬t͒ andqqѨT routסcooT+2ͩrѨrͪͬͩͪͬ⌬t. Theenergyͫͫconservationrסlawrwf ͑x,tgives ͒ Qres͑t+⌬t͒−Qres͑t͒=qrin−qrout,......................(11)whenѨT− ͩͪ⌬t→0,and⌬r→ͩ0, ͩͪrѨTѨrͪ→,andrѨTrסrwf͑x,t͒ ͩrwfѨrnote,Ѩr→r͑x,t͒ѨT+,inwhichѨT−andѨT+de-respectively,rסrwf͑x,t+⌬t͒wfthetemperatureѨrgradientbehindѨrͪ͑x,t͒ ͩͩͪandinѨrfrontͪofthewaterfront.ApplyingQ11yields: res(t),Qres(t+⌬t),qrin,andqoutintoEq.͑c+ − wqw−coqo͒T+2ͫͩrѨTѨrͪ−ͩr ѨTѨrͪͬ=2͑aѨrwf w−ao͒rwf͑x,t͒ Ѩt..............(12)FromEq.4,wehaverѨrwfqw wf Ѩt= ͑1−s............................(13)or−swi͒UseͩofEq.13ѨTͪ+ − ͩinEq.12yields: ѨT+ ͑qo−qw͒ ѨrѨrͪ= co2rT.......................(14) wf Notethatqsoweprovedthat ѨT oסqwiatrסrwf,ousatthewaterfront. Ѩrisalsocontinu-Withtheproperlydefinedinitialcondition,boundarycondi-tionsgivenbyEqs.7through9,andthecontinuousconditionoftemperatureanditsgradientatthewaterfront,wecanobtainthereservoirtemperaturedistributiongivenoilflowrate,qitisdifficulttogettheo(x,r,t),beyondthewaterfront.However,exactanalyticalsolutionofthereservoirtemperaturemodelbecauseboththelocationofthewaterfront,rwf(x,t),andtheoilflowratebeyondthewaterfront,qo(x,r,t),aretimedependent. NumericalSolution.Inthissection,anewfinitedifferenceequa-tionisdevelopedtosolvethereservoirtemperaturemodel, problemofdiscontinuityofѨ2especiallytoaccountfortheT thewaterfront. Ѩr 2at Letusconsidertworadialgridblockswithdifferentgridsizesof⌬rD,i−1סrD,i−rD,i−1and⌬rD,iסrD,i+1−rD,i.Let␣intheithgridblockbetweeniandrirepre-sentthevaluesof␣andD,iandr␣D,i+1␣.Iftheithgridblockiswithinthewaterflowregime,theniסw,andiסw.Otherwise,␣iס␣o,andi=o.Attimetj,oneofthenodesischosensuchthatitisexactlyonthewaterfront.LetTi,j,Ti−1,jandTi+1,jdenote,ͩrespectively,ͪ−ͩthetemperatureͪat rѨ2TѨ2T+ D,i,rD,i−1,andrD,i+1attimetj; anddenotethesecond-orderѨr2Ѩr2Di,jDi,→0,respectively,derivativesinwhichoftemperature>0.FromtheatTaylor’srj D,i−andseries,rD,i+wewhen,j+ͩѨT⌬r1D,i+ 2ͩѨ2T+Ti+1,j=Ti2⌬r2 D,i.............(15)i,j − Ti−1,j=Ti,j− ͩѨrDͪѨTѨrD ͪ⌬r1 ͩѨrD ͪhave Ѩ2TD,i−1+ ͪi,j ⌬r2D,i−1..........(16)i,j 2Ѩr2D i,j 133 Fig.2—Reservoirtemperaturedistribution,numericalsolution. SubstitutingͩѨTͪEq.10intoEqs.15andͩ16gives =Ti+1,j−Ti,j␣i⌬rD,iѨT ͩѨrDi,j ⌬rD,i͑1−ci͒− 2͑1−ci͒ѨtD ͪ..............(17)ѨTTi,j−Ti−1,j␣i−1⌬ѨrD ͪ= i,j ⌬rD,i−1͑1+ci−1͒+ rD,i−1ѨT 2͑1+ci−1͒ͩi,j ѨtD ͪ,.........(18) i,j inwhichc͑1−2i͒⌬rD,i͑1−2i−1͒⌬rD,i−1 iס,ci−1ס,ͩ2rand D,i2rD,i ѨT ѨtD ͪ= Ti,j−Ti,j−1 ⌬t.................................(19) i,j D,j ByuseofEq.19inEqs.17and18,wecanderivethefollowingfinitedifferentialequation: −Ti−1,j+fi,jTi,j−giTi+1,j=hi,jTi,j−1,.......................(20)foriס2,...,Nr−2andjס1,g⌬r2,...Nt,inwhichfi,jס1+gi+hi,j, D,i−1͑1+ci−1͒⌬rD,iס ⌬r,andhi−11+ci−1 D,i͑1−ci͒i,jס2⌬tD,jͫ1−ci␣i⌬ri+␣i−1⌬ri−1 ͬ.UseoftheboundaryconditionT0,jסTw(xD,tj)foriס1inEq.20yields: f1,jT1,j−g1T2,j=T0,j+h1,jT1,j−1..........................(21)Similarly,useoftheboundaryconditionTNr,jסTRforiסNr−1inEq.20yields: −TNr−2,j+fNr−1,jTNr−1,j=hNr−1,jTNr−1,j−1+gNr−1TR............(22)GivenTi,j−1(iס1,2,...,Nbysolvingr−1),T0,thej,andTlinearR,wecandetermineTi,j(iס1,2,...,Nr−1)equationsgivenbyEqs.20through22. Figs.2and3showthenumericalresultsofreservoirtempera-turedistributionandtemperaturegradientdistributionforthree Fig.3—Reservoirtemperaturegradient,numericalsolution.134 differentcasesattס12(hr).TheparametersusedforthenumericalsolutionarelistedinTable1.Thewellboretemperatureisafunc-tionoftimegivenby: Tw0͑t͒=50+48exp͑−0.3964t͒........................(23)Forcaseone,wesetqoסqinwiandcwhichoסthecwbeyondthewaterfront,whichrepresentsthecasewaterfrontisartificiallymovedtoinfinity.Forcasetwo,wesetq6beyondthewaterfront.Forcasethree,weoסsetqwiandcqoס2.13×10beyondthewaterfront,whichrepresentstheextremeoסqwiandccaseofoסno0flowbeyondwaterfront.Fig.2showsthattemperaturedistribu-tionsfordifferentcaseshavenosignificantdifference.Thetem-peraturebeyondthewaterfrontisveryclosetotheinitialreservoirtemperature,soassumingqo(x,r,t)סqwiandcoסcwbeyondthewaterfrontwillnotsignificantlyaffecttheenergyexchangebe-tweenthesetwoflowregimes,(i.e.,agoodapproximationofthereservoirtemperaturedistributioncanbeobtainedbyartificiallymovingthewaterfronttoinfinitybecausethefrontpartoftheinjectedfluidhasgivenallitsheattothematrix).Fig.3showsthatthetemperaturegradientspredictedforthreedifferentcasesarealmostidenticalexceptaslightvariationatthewaterfrontforbothcasetwoandcasethree. AnalyticalSolution.Ananalyticalsolutionofthereservoirtem-peraturemodelcanbeobtainedbyartificiallymovingthewaterfronttoinfinity.Let⌬T(x,r,t)סTR−T(x,r,t)denotethetempera-turedropinthereservoir,andEq.10becomes ␣Ѩ⌬TѨ2⌬T1−2͑xD͒Ѩ⌬TѨtD=Ѩr2+,.....................(24)DrDѨrDinwhich␣ס␣aw wס.Let⌬T(x,rD,tD)סrDw(x,rD,tD),andEq.24becomes cw ѨwѨ2␣Ѩt=w1ѨwwѨr2+−22..........................(25)DDrDѨrDrDTheboundaryconditionsandinitialconditioncanberewrittenasw͑xD,1,tD͒=⌬Tw͑xD,tD͒.............................(26) rlim,rD→ϱ w͑xDD,tD͒=0.................................(27) w͑xD,rD,0͒=0......................................(28)ApplyingLaplacetransformtoEqs.25through28gives:Ѩ2w1ѨwѨr2rѨr␣pͩ1−2+−␣pr2w=0...................(29)DDDD ͪw͑xD,1,p͒=⌬Tw͑xD,p͒,rlimw͑xD→ϱ D,rD,p͒=0..........(30) Eq.29isamodifiedBesselequationwithageneralsolutionofw͑xD,rD,p͒=c1I͑͌␣prD͒+c2K͑͌␣prD͒............(31) ⌬T͑xD,rD,p͒=c1rDI͑͌␣prD͒+c2rDK͑͌␣prD͒,......(32) February2008SPEReservoirEvaluation&Engineering inwhichIv(z)andKv(z)arethesecondkindmodifiedBesselfunctions,andctheboundaryconditions.1andc2aretwoconstantsthataredeterminedbyWiththeboundaryconditionsatinfinity,rlim⌬T͑xD,rD,tD͒ס0,weknowc1ס0.AndwiththeboundaryconditionD→ϱ atwellbore(rDס1),⌬T(xD,1,p)ס⌬Tw(xD,p),wehave c⌬Tw͑xD,p͒ 2ס .Thetemperaturedistributioninreservoiriscom-pletelyK͑͌determined␣p͒ bythewellboretemperature⌬Tdimensionlessinjectionrate,andthedimensionlessw(xthermalD,p),thepa-rameter␣.⌬T͑xTw͑xD,p͒D,rD,p͒= KDK͑͌␣prD͒...............(33) ͑͌␣p͒ rTheBesselfunctionK(z)hasthepropertyof dK͑͌␣prD͒ drD =−͌␣p͑K−1͑͌␣prD͒ +͌␣prK͑͌␣prD͒͒.................(34)DThus,wehave: Ѩ⌬TdK͑͌␣prD͒ѨrD=⌬Tw͑xD,p͒KͫrD−1K͑͌␣prD͒+rD͑͌␣p͒drD ..........................ͬͫͬ(35)rѨ⌬TD Ѩrp,͒,....................(36) D =−⌬Trw͑xD,p͒f͑D=1 inwhichf͑p,͒ס͌␣pK−1͑͌␣p͒ .Fig.4showsthenumericalK͑͌(solid␣p͒ curve)andanalytical(dottedcurve)resultsofreservoirtemperaturegradientatthewellbore.Bothcurvesarealmostidenticalexceptforveryearlytime.WellboreTemperatureModel LetQinjectionwi(x)denotethewellboreflowrate(m3/h)andqrateperunitlengthalongwellbore(mwi2(x)denotethe/h).Ifweignorethecompressibilityofinjectedfluidinthewellbore,themassconservationequationgives ѨQwi Ѩx=−qwi͑x͒.......................................(37)Integratingtheaboveequationfromheel(xס0)totoe(xסL)yieldsthetotalinjectionrateattheheel:QLinj= ͐0 qwi ͑x͒dx, ...................................(38) Fig.4—Comparisonbetweennumericalandanalyticalsolutions.February2008SPEReservoirEvaluation&Engineering inwhichLdenotesthelengthofthehorizontalsectionofwellbore, andQwi(x)isgivenbythefollowingintegration:Qxwi͑x͒=Qinj− ͐0qwi ͑͒d. ...........................(39) LetTandqw(x,t)denotetemperaturedistributionalongthewellboreTw(x,t)denotetheheatfluxperunitlengthfromformationintothewellborecausedbyheatconduction,thatis,qѨTTw͑x,t͒=2ͩr Ѩrͪ.............................(40) r=rw Thetotalheatstoredinthetinyelementdxis Qwell=cwAwTw͑x,t͒dx,...............................(41) inwhichA22wס2rwdenotesthewellborecross-sectionalarea(m).Theenergyconversationequationforelementdxis ѨQwell Ѩt=qwin−qwout..................................(42)Here,qwinandqwoutdenotetheheatrateflowingintoandoutofthetinywellboreelementdx.qflowingwiniscomposedoftwoterms:theheatcarriedbythefluidintotheelementthroughthewellborecross-sectionalareaatx,cwQwi(x,t)Tw(x,t),andtheheatflowingfromtheformationtothewellboreelementthroughthewellboresurfacecausedbyheatconduction,qTw(x,t)dx.qheatcarriedbythefluidflowingwoutisalsocom-posedoftwoterms:theoutoftheelementthroughthewellborecross-sectionalareaatx+dx,cwQwi(x+dx,t)Tw(x+dx,t),andtheheatcarriedbythefluidflowingoutoftheelementthroughthewellboresurface,cwqwi(x,t)Tw(x,t)dx.qwin=cwQwi͑x,t͒Tw͑x,t͒+qTw͑x,t͒dx...................(43)qwout=cwQwi͑x+dx,t͒Tw͑x+d..........................x,t͒+cwqwi͑x,t͒Tw͑x,t͒dx (44)Substitutingqwin,qout,andEqs.40and41intoEq.42givescwwAѨTѨt+cѨTw ѨTw wQwiѨx−2ͩrѨrͪ=0.............(45) r=rw Theinitialconditionis Tw͑x,0͒=TR........................................(46)Theboundaryconditionattheheelis Tw͑0,t͒=Tw0͑t͒......................................(47)AndTw0(t)canbemeasuredwiththeDTSsystem. Similarly,let͑xcwQwi͑xD͒1 D͒ס=͐͑͒ddenotethedimension-lesswaterflowrate,and⌬4TLxD w(xD,t)סTR−Tw(xD,t).ThenEq.45canbenormalizedas Ѩ⌬Tw Ѩ⌬TwѨ⌬TѨtD+2͑xD͒ѨxD−ͩrD ѨrD ͪ=0...............(48) rD=1 Theinitialconditionandboundaryconditionbecome⌬Tw͑xD,0͒=0.......................................(49)⌬Tw͑0,tD͒=⌬Tw0͑tD͒.................................(50)TakingtheLaplacetransformofEq.48incombinationwiththeinitialconditiongivenbyEq.49yields:⌬Tw+2͑xD͒ Ѩ⌬TwѨ⌬TѨxD−ͩrD ѨrD ͪrD=1 =0................(51) UseofEq.36inEq.51yields: Ѩ⌬Tw 1+f͑p,͑xѨx=−D͒͒2͑x⌬Tw..........................(52)DD͒135 Fig.5—Comparisonoftemperatureprofilesobtainedwiththeanalyticalsolution(symbols)andanumericalreservoirsimula-tor(curves). TheanalyticalsolutionofEq.52isgivenby ⌬Tw͑xD,p͒=⌬Tw0͑p͒F͑xD,p͒..........................(53)F͑x͑p,͑͒͒ D,p͒=expͫ− ͐xD1+f0 2͑͒ dͬ................(54) TakingtheinverseLaplacetransformof⌬Ttemperatureprofile: w(xD,p)givesthewellbore⌬Tw͑xD,tD͒=⌬Tw0͑tD͒*F͑xD,tD͒......................(55)Herethesymbol“*”representstheconvolutionoperator.TheanalyticalsolutiongivenbyEq.55isasolutionvalidforvariablewelltemperature. ResultsandApplications ComparisonofAnalyticalandNumericalSolutions.BuiandJalali(2004)providedadetailedanalysisoftemperaturebehavior Fig.6—Effectsofinjectionrateonwellboretemperature.136 inhorizontalwaterinjectors,inwhichacommercialreservoirsimulator(ECLIPSE)wasusedasthenumericalanalysistool.Fig.5showsthecomparisonofthetemperatureprofilesobtainedwiththeanalyticalsolutiondiscussedabove(representedbysymbolsinFig.5)andthenumericalsimulationresults(representedbycurvesinFig.5)atdifferenttimes(1.2hr,2.4hr,4.8hrand12hr)foracasewhentheinjectionprofileisperfectlyuniformalongthehori-zontalwell.TheparametersusedforthissyntheticcasearelistedinTable1.Thetemperatureattheheel(xס0)isgivenbyEq.23.AsshowninFig.5,fortheveryearlytime(t<2.4hours),thewellboretemperaturepropagationpredictedwiththeanalyticalso-lution(opencirclesorsquares)issomewhatslowerthanthatpre-dictedwiththenumericalsolution(dashedordottedcurves).Theassumptionsofpiston-likeinjectionandincompressiblefluidandthetreatmentofartificiallymovingthewaterfronttoinfinitymayintroducesomeerrorstoourmodelandtheanalyticalsolution.Atveryearlytime,thewaterfrontislesslikeapiston-likeinjection,andmoreerrorisintroduced.Whiletimeincreases,sucherrorreduces,andthedifferencebetweentheanalytical(solidtrianglesandsolidcircles)andnumericalsolutions(dashed,dotted,andsolidcurves)vanishes.Thegoodagreementbetweentheanalyticalsolutionandnumericalsolutionindicatesthattheassumptionsofpiston-likeinjection,incompressiblefluid,andthetreatmentofartificiallyremovingthelocationofwaterfronttoinfinityarere-alistictosimplifythereservoirtemperaturemodelduringwaterinjectionthroughahorizontalwell. EffectsofInjectionRate.Fig.6illustratestheeffectsofinjectionrateonwellboretemperatureprofile.InFig.6,theinjection-rateprofilealongthewellboreisuniform,(i.e.,injectionrateisacon-stantalongthewellbore).ThetemperatureattheheelisalsogivenbyEq.23.Thetimeissettot0.25,0.5,1.0,and2.0representDסdifferent5.Differentinjectionvaluesratesofalongס0.15,thewellbore.Thewellboretemperaturedecreasesfasterwhenmorewaterisinjectedorthevalueofbecomesgreater.Forextremecases,ifnowaterisflushedthroughthewellboreandinjectedintothereservoir(ס0),thewellboretemperatureisthesameasthatofthereservoir,(i.e.,Tlargeinjectionrate(→wϱס),TtheRס98temperature°C).Onthealongotherthehand,wholeforwell-veryboredecreasesinstantaneouslyfromthereservoirtemperaturetothetemperatureofinjectedfluid. EffectsofInjection-RateProfile.Fig.7showsthreedifferentpatternsofinjection-rateprofiles,decreasingratepattern(blacklinewithopencircles),uniformratepattern(blacklinewithnosymbol),andincreasingpattern(blacklinewithsolidcircles).Fig.8illustratesthewellboretemperatureprofilespredictedwiththethreedifferentpatternsofinjection-rateprofiles.Similarly,curveswithopencircles,solidcircles,andcurveswithnosymbolrepresent,respectively,temperatureprofilespredictedwithde-creasingratepattern,increasingratepattern,anduniformratepat-tern.Solidcurvesrepresenttemperatureprofilespredictedattimetס2hranddashedcurvesrepresentthosepredictedattimetס10hr. Fig.7—Differentpatternsofinjection-rateprofile. February2008SPEReservoirEvaluation&Engineering Fig.8—Effectsofinjection-rateprofileonwellboretemperature. FromFig.8,weseethatwellboretemperaturepredictedwithincreasinginjection-ratepatternpropagatesfasterthanthatpre-dictedwiththeuniforminjection-ratepattern.Thisisreasonablebecauselesswaterisinjectedneartheheel,morevolumeofwaterflowsinthewellbore,andthusitcoolsthewellborefaster.Ontheotherhand,wellboretemperaturepredictedwithdecreasinginjec-tion-ratepatternpropagatesslowerthantheuniforminjection-ratepattern.AsshowninFig.8,curveswithsolidcircles(increasinginjection-ratepattern)arebelowcurveswithnosymbols(uniforminjection-ratepattern).Curveswithopencircles(decreasinginjec-tion-ratepattern)areaboveothercurves.Thesefeaturesofwellboretemperaturebehaviorsfordifferentinjection-ratepatternscanbeusedtoidentifyinjection-ratepatternswithoutapply-ingcomplicatedtechniquessuchastemperatureinversionorhis-torymatching. Becausewellboretemperatureprofilesarechangingwithtime,itisinconvenienttodirectlyusethetemperatureprofilesatdiffer-enttimestoidentifytheinjection-ratepattern.Tocapturethemajorfeaturesofthetemperaturebehaviorsfordifferentinjectionpat-terns,weproposeamethodof“isotherm”plot. Fig.10—FieldDTSdata. February2008SPEReservoirEvaluation&Engineering Fig.9—Isothermplotsfordifferentinjectionpatterns. Foragiveninjectionprofile,thewellboretemperatureatanypointxD(orx)andatanytimetmodeldiscussedD(ort),Tabove.w(xD,tWeD),canbesolvedfromthetemperatureselectsuch(t)thatTaconstant,andthecurveofsuch(tD,xDw(xanD,tisothermD)isplotforthegiventemperature.Fig.9D,xshowsD)representssomepredictedisothermplotsfordifferentinjectionprofilesataconstanttemperatureof80°C. InFig.9,theabscissaisln(twithnosymbolrepresentsD)andtheordinateisln(xtheisothermplotforauniformD).Thecurveinjection-rateprofile.Similarly,thecurveswithopencirclesandsolidcirclesare,respectively,theisothermplotsforadecreasinginjection-ratepatternandincreasinginjection-ratepattern.Asdis-cussedabove,foranincreasinginjection-rateprofile,wellboretemperaturepropagatesfaster.Thus,forthesameinjectiontimeinterval,(i.e.,sametD),thedistanceoftemperaturepropagatingalongthehorizontalwellbore—hererepresentedbythex—wouldbelargerforanincreasinginjection-rateDintheisothermplotprofilethanforauniforminjectionprofile.So,theisothermplotforanincreasinginjectionprofileisalwaysabovetheisothermcurveforuniforminjection.Ontheotherhand,theisothermplotforadecreasinginjectionprofileisbelowtheisothermcurveforuniforminjection.So,fromtherelativepositionoftheisothermplot,wecaneasilyrecognizethepatternofaninjectionprofile.InjectionPatternRecognition.Fig.10showstemperaturepro-filesrecordedinahorizontalinjectionwell,whichhasbeenre-portedbyBrownetal.(2003).TheparameterscharacterizingheattransferinthereservoirarelistedinTable2.ThelengthofthehorizontalsectionisLס1760(m).Fromthemeasuredtemperatureprofile,wegetthereservoirtemperatureTlibriuminjectiontemperatureattheheelisRסT98(°C)andtheequi-liststhemeasuredbottomholeinjectiontemperaturesweס50(°atC).theTableheelat3differenttimes.ThefittedtemperaturefunctionattheheelisgivenbyEq.23. 137 ThecurvewithopencirclesinFig.10showsthetemperatureprofilealongthewellborebeforewaterinjection.Fig.10clearlyshowsthatthewellboretemperaturedecreaseswheninjectiontimeincreasesbecauseofthecoolingeffectofinjectedwater.Wheninjectiontimeincreases,thetemperatureattheheelreachesitsequilibriumtemperatureofapproximately50°Cforthegivenin-jectionrate.Thehorizontalsectionofthewellboregraduallycoolsoff(i.e.,lowtemperatureisgraduallypropagatedtothetoeofthewellwhilemorewaterisinjectedintothereservoir). Forexample,letustakethetemperatureof80°C,readthedistancesfromtheheeltothepointsinwhichthemeasuredwell-boretemperatureequals80°Cforaseriesofinjectionintervals,andputthesereadingsintotheisothermplot.TheisothermplotonthebasisofthemeasuredDTSdatainFig.10isshownasthecurvewithopentrianglesinFig.9,anditisfarbelowtheisothermoftheuniforminjectioncase.Therefore,wecanconcludethattheinjec-tion-rateprofileforthefieldcaseisfarfromuniform.Specifically,theinjectionratemustdecreasedrasticallyfromtheheeltothetoe.ThisconclusionisconsistentwiththefindingsofBuiandJalali(2004). FractureDetection.AnotherpossibleapplicationofthewellboretemperaturemodelandDTSmeasurementsisfracturedetectioninhorizontalinjectionwells.Detectingandanalyzingfracturesisacriticalstepinmodelingfracturedcarbonatereservoirs(Elsaidetal.2007).Newtechnologieshaveevolvedinthelastseveralyearsfordetectingfractures,includingimagelogs(Bartonetal.1997),3DseismicP-waveanalysis(Wangetal.2006),anddy-namicdataanalysis(Ozkaya,2006,2007;GangandKelkar2006).Ifthehorizontalwellintersectsafractureplane,theinjectionrateatthelocationofthefractureplanecanbemuchgreaterthanthatatotherlocations.Here,weconsiderasyntheticcase.ThethermalparametersofthereservoirarethesameasthoselistedinTable2.Theinjection-rateprofileisshowninFig.11.Theinjec-tionrateatthelocationoffractureisapproximately100timesgreaterthanthatatotherlocations.Fig.12isthetemperature Fig.12—Temperatureprofilewithfracture. 138 Fig.11—Injectionprofilewithfracture. profilegeneratedonthebasisoftheinjectionrateillustratedinFig.11.Becausethevolumeflowrateofwaterinthewellboreintervalbetweentheheelandthefractureismuchgreaterthanthatbeyondthefracture,theconductiveheatthatflowsfromtheformationintothewellboremaywarmupthewaterflowinginthisintervalverylittle.Thechangeoftemperature,orthetemperaturegradientbe-tweentheheelandthefracture,ismuchlowerthanthatintherestofthewell.Therefore,onthebasisoftemperaturegradientinfor-mation,wecanidentifyafractureanditslocation.Fig.13illus-tratesthetemperaturegradientprofile.Temperaturegradienthasabigjumpatthelocationofthefracturebecausethevolumeflowrateofwaterinthewellboreatthispointisdiscontinuous.Discussion Becausethewellboretemperaturemodelproposedinthispaperwasbasedonseveralassumptions,theapplicationofthissimpli-fiedmodelisofcourselimitedbysuchassumptions. Althoughnotmathematicallyproveninthispaper,theeffectsofmassandheattransferinthedirectionparalleltotheaxisofthehorizontalwellbore,orthedirectionalongx,isprettysmallandcanbeneglected.First,thepressuregradientinthereservoiralongxdirectionismuchsmallerthanthatintheradialdirectionduringtheperiodofwaterinjection.So,masstransferinthereservoiralongthedirectionofxcanbeignored.Second,theconvectiontermofheattransferinthereservoirismuchmoresignificantthanthatofheatconduction,andthus,masstransferintheradialdi-rectionmakestheheattransferinthexdirectionalsonegligible. Fig.13—Temperaturegradientwithfracture. February2008SPEReservoirEvaluation&Engineering Injectionratevaryingwithrespecttotimewillmakethemodelverycomplicated,becausebothdimensionlessparametersandbecometimedependent.Ifthetotalinjectionratedoesnotchangewithtime,theinjection-rateprofilealongthewellborewouldnotchangewithtimesignificantly.Foranisotropicformation,thewa-terfrontwillbeanellipseinsteadofacircle.Inthiscase,weneedtoinvestigatethepossibilityofapplyingthetransformfromanellipsetoacircle. Piston-likeinjectionisareasonableassumptiontosimplifythemodel.Forrealcases,thisassumptioncanslightlychangethelocationandtheshapeofthewaterfrontonlyandwillnotchangeverymuchthetemperaturedistributioninthereservoir,especiallytheheatexchangebetweenwellboreandreservoir.Withtheas-sumptionofpiston-likeinjection,wecanconvenientlygetridofcomplexitiescausedbyfractionalflow,relativepermeabilitycurves,pressurechanges,andchangesofoilandwaterviscositywithrespecttothechangeoftemperature(i.e.,wecaneasilydecouplethereservoirtemperatureequationfromthereservoirpressureandsaturationequations).Therequirementisthatthetotalinjectionratebekeptconstant,whichcanbeeasilyachievedforin-situinjectionoperations.Thetreatmentofartificiallymovingthewaterfronttoinfinitymakesitpossibletoobtainananalyticalsolutionforbothreservoirtemperaturemodelandwellboretem-peraturemodel.Thegoodagreementbetweenanalyticalsolutionandnumericalsolutionalsoprovesthatsuchassumptionsandtreatmentsarereasonable. The1Dradialtemperaturepropagationmodelofinjectingwa-terintoareservoironlyholdsfortheso-called“earlytime”injec-tion,whichmeansthatthetemperaturefrontdoesnotreachthetoporbottomboundarybedsoftheformation.Theintervalofthis“earlytime”periodmayvaryfromseveraldaystomonths,de-pendingupontheinjectionrate,thethicknessoftheformation,thethermalparametersofrockandinjectedfluid,andthelocationofthewellbore.Ifthethicknessoftheformationisbigenoughsothatthewellboretemperaturecanreachthesteadytemperatureofin-jectedfluidattheheelbeforethetemperaturefrontinthereservoirreachesthetoporbottombeds,thenwecanignorethelimitationof“earlytime.”So,weneedtocheckwhetherthereservoirtem-peraturefrontremainswithinthetopandbottomboundariesbeforethewellboretemperaturereachesthesteadytemperatureofin-jectedfluidattheheelandmakesurethatthemodelproposedisvalidforagivenproblem. Asimplifiedwellboretemperaturemodelisproposedinthispaper.Theauthorshopethatthisworktriggersmoreextensiveinvestigationsonhowtoinferinjectionprofilesandrockproper-tiesfrommeasuredtemperaturedatawithDTS,includingrigorousmethodsofinversionandhistory-matchingtechniques.Conclusions Onthebasisofthediscussionabove,wecandrawthefollowingconclusions: 1.Atheoryisdevelopedtodeterminethedistributionoftempera-tureprofileinahorizontalwellwhena“cold”fluidflushesthewellborefromtheheeltothetoeandwhenthefluidisinjectedintothereservoir. 2.Thetheorycanaccountforbothavariableinjectiontemperatureattheheelandaninjectionprofilethatvariesalongthelengthofthewellbutdoesnotchangewithtime.However,itholdsfor“early-time”(i.e.,beforethetemperaturepropagationinares-ervoirisaffectedbybedboundaries). 3.Ananalyticalsolutionisobtainedwiththetreatmentofartifi-ciallymovingthewaterfronttoinfinity.Comparisonoftheanalyticalsolutionandnumericalsolutionindicatesthattheas-sumptionsarereasonable.Themodelcanbeusedtogeneratethetemperatureprofileexpectedfromanarbitraryinjectionprofile.4.Injection-rateprofilehassignificantimpactonthebehaviorofwellboretemperaturepropagationduringtheperiodofinjection.Thisrelationshipcanbeusedtoinferthepatternofinjectionprofileandidentifysharpfeatures,suchashigh-permeabilitystreaksandfractures. February2008SPEReservoirEvaluation&Engineering 5.Thepreviousworkcomplementsexistingsolutionsinthelitera-turethatusetemperaturedataduringshut-inorpost-shut-inperiodstoinfertheinjectionprofile. Nomenclature Aסarea,m2cסheatcapacity,J/(m3.K)Lסlength,m qסvolumeinjectionrateperlength(m2/h)orheatflow rateperlength,J/(m.h) Qסvolumeflowrate(m3/h)ortotalheat,Jrסradius,msסsaturation Tסtemperature,K ססthermalporosityconductivityofformation,J/(m.K.h)Subscripts Dסdimensionlessvariableoסoilphaserסrock wסwaterphaseorwellbore Acknowledgments WethankthemanagementofSchlumbergerforsponsoringthiswork,GeorgeBrownforprovidingdatatotestthemethodology,andThangBuifornumericalcomparisons.References Al-Asimi,M.etal.2002.AdvancesinWellandReservoirSurveillance.OilfieldReview14(4):14–35. Alves,I.N.,Alhanati,F.J.S.,andShoham,O.1992.AUnifiedModelforPredictingFlowingTemperatureDistributioninWellboresandPipe-lines.SPEPE7(4):363–367. Barton,C.A.,Moos,D.,Peska,P.,andZoback,M.D.1997.UtilizingWellboreImageDataToDeterminetheCompleteStressTensor:Ap-plicationtoPermeabilityAnisotropyandWellboreStability.TheLogAnalyst38(6):21–33. Brown,G.A.2006.MonitoringMultilayeredReservoirPressureandGas/OilRationChangesOverTimeUsingPermanentlyInstalledDistrib-utedTemperatureMeasurements.PaperSPE101886presentedattheSPEAnnualTechnicalConferenceandExhibition,SanAntonio,Texas,24–27September.DOI:10.2118/101886-MS. Brown,G.A.,Kennedy,B.,andMeling,T.2000.UsingFiber-OpticDis-tributedTemperatureMeasurementstoProvideReal-TimeReservoirSurveillanceDataonWytchFarmFieldHorizontalExtended-ReachWells.PaperSPE62952presentedattheSPEAnnualTechnicalCon-ferenceandExhibition,Dallas,1–4October.DOI:10.2118/62952-MS.Brown,G.A,Storer,D.,McAllister,K.,al-Asimi,M.,andRaghavan,K.2003.MonitoringHorizontalProducersandInjectorsDuringCleanupandProductionUsingFiber-Optic-DistributedTemperatureMeasure-ments.PaperSPE84379presentedattheSPEAnnualTechnicalCon-ferenceandExhibition,Denver,5–8October.DOI:10.2118/84379-MS. Bui,T.D.andJalali,Y.2004.DiagnosisofHorizontalInjectorswithDis-tributedTemperatureSensors.PaperSPE89924presentedattheSPEAnnualTechnicalConferenceandExhibition,Houston,26–29Septem-ber.DOI:10.2118/89924-MS. Elsaid,M.E.etal.2007.DetectingandAnalyzingFracturesintheSub-surface:TheCriticalStepsinModelingFracturedCarbonateReservoir.PaperSPE105707presentedattheSPEMiddleEastOilandGasShowandConference,Bahrain,11–14March.DOI:10.2118/105707-MS.Evensen,G.2007.DataAssimilation—theEnsembleKalmanFilter.NewYorkCity:Springer. Gang,T.andKelkar,M.2006.HistoryMatchingforDeterminationof FracturePermeabilityandCapillaryPressure.PaperSPE101052pre-sentedattheSPEAnnualTechnicalConferenceandExhibition,SanAntonio,Texas,24–27September.DOI:10.2118/10152-MS. 139 Gao,G.2005.DataIntegrationandUncertaintyEvaluationforLargeScale AutomaticHistoryMatching.PhDdissertation,Tulsa:UniversityofTulsa. Gao,G.andReynolds,A.C.2006.AnImprovedImplementationofthe LBFGSAlgorithmforAutomaticHistoryMatching.SPEJ11(1):5–17.SPE-90058-PA.DOI:10.2118/90058-PA. Gao,G.,Zafari,M.,andReynolds,A.C.2006.QuantifyingUncertaintyforthePUNQ-S3ProbleminaBayesianSettingWithRMLandEnKF.SPEJ11(4):506–515.SPE-93324-PA.DOI:10.2118/93324-PA.Gu,Y.andOliver,D.S.2006.TheEnsembleKalmanFilterforContinuous UpdatingofReservoirSimulationModels.JournalofEnergyRe-sourcesTechnology128(1):79–87.DOI:10.1115/1.2134735. Izgec,B.,Kabir,C.S.,Zhu,D.,andHasan,A.R.2007.TransientFluidandHeatFlowModelinginCoupledWellbore/ReservoirSystems.SPEREE10(3):294–301.SPE-10270-PA.DOI:10.2118/10270-PA.Johnson,D.,Sierra,J.,Gualitieri,D.,andKaura,J.2006.DTSTransientAnalysis:ANewTooltoAssessWell-FlowDynamics.PaperSPE103093presentedattheSPEAnnualTechnicalConferenceandExhi-bition,SanAntonio,24–27September.DOI:10.2118/103093-MS.Kocabas,I.2006.AnAnalyticalModelofTemperatureandStressFieldsDuringCold-WaterInjectionIntoanOilReservoir.SPEPO21(2):282–292.SPE-88762.DOI:10.2118/88762-PA. Laurence,O.S.andBrown,G.A.2000.UsingReal-TimeFiberOpticDis-tributedTemperatureDataforOptimisingReservoirPerformance.Pa-perSPE65478presentedattheSPE/PetroleumSocietyofCIMInter-nationalConferenceonHorizontalWellTechnology,Calgary,6–8No-vember.DOI:10.2118/65478-MS. Lee,J.H.2006.AssistedInterpretationofFiber-OpticDataforSmart-Well Completions.PaperSPE101675presentedattheAbuDhabiInterna-tionalPetroleumExhibitionandConference,AbuDhabi,U.A.E.,5–8November.DOI:10.2118/101675-MS. Li,R.2001.ConditioningGeostatisticalModelstoThree-Dimensional Three-PhaseFlowProductionDatabyAutomaticHistoryMatching.PhDdissertation,Tulsa:UniversityofTulsa. Li,R.,Reynolds,A.C.,andOliverD.S.2001.HistoryMatchingofThree-PhaseFlowProductionData.PaperSPE66351presentedattheSPEReservoirSimulationSymposium,Houston,11–14February.DOI:10.2118/66351-MS. Mendes,R.B.etal.2005.AnalyticalSolutionforTransientTemperature FieldAroundaCasedandCementedWellbore.PaperSPE94870pre-sentedattheSPELatinAmericanandCaribbeanPetroleumEngineer-ingConference,RiodeJaneiro,20–23June.DOI:10.2118/94870-MS.Nasrabadi,H.,Ghorayeb,K.,andFiroozabadi,A.2006.Two-PhaseMul-ticomponentDiffusionandConvectionforReservoirInitialization.SPERE9(4):530–542.SPE-66365-PA.DOI:10.2118/66365-PA.Nath,D.K.,Sugianto,R.,andFinley,D.2007.Fiber-OpticDistributed-Temperature-SensingTechnologyUsedforReservoirMonitoringinanIndonesiaSteamflood.SPEDE22(2):149–156.SPE-97912-PA.DOI:10.2118/97912-PA. Nowak,T.J.1953.TheEstimationofWaterInjectionProfilesFromTem-peratureSurveys.Trans.,AIME198,203-212. Oliver,D.S.1996.OnConditionalSimulationtoInaccurateData.Math.Geology28(6):811–817.DOI:10.1007/BF02066348. Ouyang,L.-B.andBelanger,D.2006.FlowProfilingbyDistributedTem-peratureSensor(DTS)System—ExpectationandReality.SPEPO21(2):269–281.SPE-90541-PA.DOI:10.2118/90541-PA. Ozkaya,S.I.andRichard,P.D.2006.FracturedReservoirCharacterizationUsingDynamicDatainaCarnonateField,Oman.SPERE9(3):227–238.SPE-93312-PA.DOI:10.2118/93312-PA. Ozkaya,S.I.etal.2007.DevisingKnowledge-BasedDecisionTreeforDetectionofFractureCorridorsFromDynamicDatainaCarbonateReservoirinOman.PaperSPE105015presentedattheSPEMiddle 140EastOilandGasShowandConference,Bahrain,11–14March.DOI:10.2118/105015-MS. Platenkamp,R.J.1985.TemperatureDistributionAroundWaterInjectors: EffectsonInjectionPerformance.PaperSPE13746presentedattheSPEMiddleEastTechnicalConferenceandExhibition,Bahrain,11–14March.DOI:10.2118/13746-MS. Ramey,H.J.Jr.1962.WellboreHeatTransmission.JPT14(4):427–435;Trans.,AIME,225.SPE-96-PA.DOI:10.2118/996-PA. Reynolds,A.C.etal.2004.SimultaneousEstimationofAbsoluteand RelativePermeabilitybyAutomaticHistoryMatchingofThree-PhaseFlowProductionData.J.CanadianPet.Tech.,43(3):37–46. Romero,A.,Zhu,D.,andHillA.D.2005.TemperatureBehaviorinMul-tilateralWells:ApplicationtoIntelligentWells.PaperSPE94982pre-sentedattheSPELatinAmericanandCaribbeanPetroleumEngineer-ingConference,RiodeJaneiro,20–23June.DOI:10.2118/94982-MS.Roux,B.etal.1980.AnImprovedApproachtoEstimatingTrueReservoir TemperatureFromTransientTemperatureData.PaperSPE8888pre-sentedattheSPEAnnualCaliforniaRegionalMeeting,LosAngeles,9–11April.DOI:10.2118/8888-MS. Sumnu-Dindoruk,D.andDindoruk,B.2006.AnalyticalandNumerical SolutionofNonisothermalBuckley-LeverettFlowIncludingTracers.PaperSPE102266presentedattheSPEAnnualTechnicalConferenceandExhibition,SanAntonio,Texas,24–27September.DOI:10.2118/102266-MS. Tarantola,A.2004.InverseProblemTheoryandMethodsforModelPa-rameterEstimation.Philadelphia,Pennsylvania:SIAMPress. Tarantola,A.andValette,B.1982.InverseProblemסQuestforInforma-tion.JournalofGeophysics50:159–170. Wang,D.Y.etal.2006.FractureAnalysisforCarbonateReservoirsUsing 3DSeismicP-WaveData:MiddleEastCaseStudy.PaperSPE101596presentedattheAbuDhabiInternationalPetroleumExhibitionandConference,AbuDhabi,U.A.E.,5–8November.DOI:10.2118/101596-MS. Wen,X.-H.andChen,W.H.2006.Real-TimeReservoirModelUpdating UsingEnsembleKalmanFilterWithConfirmingOption.SPEJ11(4):431–442.SPE-92991-PA.DOI:10.2118/92991-PA. Yoshioka,K.,Zhu,D.,Hill,A.D.,andLake,L.W.2005a.InterpretationofTemperatureandPressureProfilesMeasuredinMultilateralWellsEquippedWithIntelligentCompletions.PaperSPE94097presentedattheSPEEuropec/EAGEAnnualConference,Madrid,Spain,13–16June.DOI:10.2118/94097-MS. Yoshioka,K.,Zhu,D.,Hill,A.D.,Dawkrajai,P.,andLake,L.W.2005b.AComprehensiveModelofTemperatureBehaviorinaHorizontalWell.PaperSPE95656presentedattheSPEAnnualTechnicalCon-ferenceandExhibition,Dallas,9–12October.DOI:10.2118/95656-MS. Zafari,M.andReynolds,A.C.2007.AssessingtheUncertaintyinReser-voirDescriptionandPerformancePredictionsWiththeEnsembleKal-manFilter.SPEJ12(3):382–391.SPE-95750-PA.DOI:10.2118/95750-PA. Zhang,F.2002.AutomaticHistoryMatchingofProductionDataforLargeScaleProblems.PhDdissertation,Tulsa:UniversityofTulsa.GuohuaGaoisareservoirengineeratChevronCorp.e-mail:GUOH@chevron.com.Hiscurrentresearchinterestsincludereservoircharacterization,automatichistorymatching,optimi-zation,reservoirmanagementandmonitoring.Hewasfor-merlyafacultymemberatXi’anPetroleumInstitution.HeholdsBSandMSdegreesinmechanicalengineering,andaPhDdegreeinpetroleumengineering.YounesJalaliisareservoirengineeringadvisorwithSchlumberger,andwasformerlyafacultymemberatStanfordUniversity.HeholdsBS,MS,andPhDdegreesinpetroleumengineering. February2008SPEReservoirEvaluation&Engineering
因篇幅问题不能全部显示,请点此查看更多更全内容