第一部分 溴化锂制冷机发展过程
一、国外的发展过程
1. 美国是溴化锂制冷机的创始国,目前日本等国的溴冷机也都有较大的发展。
2.美国开利公司于1945年试制出第一台制冷量为523KW(45×104kcal/h)的单效溴冷机,开创了利用溴化锂水溶液为工质对做为吸收剂的吸收式制冷新领域。美国不仅创造了单效溴冷机,而且在世界上又率先研制出了双效溴冷机。现已研制出了直燃型、热水型和太阳能型等新型溴冷机。同时还研制了冷温水机组和吸收式热泵等新机组。
3. 日本一家汽车公司于1959年研制出制冷量为689KW(60×104kcal/h)的单效溴冷机,1962年茬原制造所又研制出双效溴冷机。日本溴冷机无论在生产数量、性能指标、应用范围和新技术、新产品研制等方面,均超过了美国,成为世界上溴冷机研究与生产领先的国家。特别是燃气两效温水机组的产量很大,约占世界上溴冷机生产总台数的2/3;目前已致力于第三种吸收式热泵和溴化锂热电并供机组的研制工作。
4. 前苏联奔萨化工厂于1965年研制出2908KW(250×104kcal/h)溴冷机。目前溴冷机的应用范围已从化纤厂扩展到其它纺织厂、橡胶厂酿酒厂、化工厂、冶金厂和核电站。
二、中国溴化锂制冷机的发展过程
我国研制溴冷机起步于60年代初期,至今已有四十多年,其发展过程大体分为四个阶段:
1. 研制阶段。60年代初船舶总公司704所(原六机部704所)、一机部通用机械研究所与高等院校以及设备制造厂通力合作,试制了两台样机。1966年上海第一冷冻机厂试制出了制冷量1160KW(100×104kcal/h)全钢结构的单效溴冷机,安装于上海国棉十二厂。60年代末期,许多单位都着手
研制单效溴冷机,这一研制工作持续到了70年代初期。
2. 单效机生产应用阶段。70年代初先后有上海、青岛、天津、北京和长沙等地的棉纺厂为了适应生产的需要,各自设计与制造了单效溴冷机。继而更多地区也都自行设计制造单效溴冷机,尤以上海、天津两地更为突出。以天津为例,70年代初至80年代初,制造出3480KW(300×104kcal/h)大型溴冷机七台,总制冷能力达到24360KW(2100×104kcal/h)。单效溴冷机在这一时期虽然有了较大发展,但仍有许多问题尚待解决,如严重的腐蚀、冷量的衰减和机器的寿命等,限制了溴冷机的进一步发展。
3. 双效机生产应用阶段。80年代初期开始研制双效溴冷机,并于1982年由开封通用机械厂生产出1744KW(150×104kcal/h)双效溴冷机组。双效机组的热力系数可提高到1.1以上,而单效机组一般为0.6~0.7,双效机组的蒸汽单耗比单效机减少约1/2,冷却水量减少约1/3,是值得提倡的节能型制冷机组。86年我厂研制出省内首台双效溴冷机1160KW(100×104kcal/h)并首家通过省级鉴定。
4. 多种新型机研制应用阶段。80年代末期国家计委提出,凡有蒸汽等热源的地区要发展溴冷机;1991年我国在世界禁用氟里昂(CFC)生产与使用的“蒙特利尔议定书”上签了字,这对进一步发展溴冷机创造了良好条件。大专院校、科研院所和制造厂家共同协力,一方面在加紧改进与提高双效溴冷机的加工技术和性能水平,另一方面也竟相研制新型的多种溴冷机。现已推出的和正在研制的有热水型、直燃型、低压型、降膜式溴冷机和吸收式热泵等。
第二部分 溴化锂制冷机工作原理
一、溴化锂制冷机的分类
溴化锂吸收式制冷机的分类方法很多:根据使用能源,可分为蒸汽型、热水型、直燃型(燃油、燃汽)和太阳能型;根据能源被利用的程度,可分为单效型和双效型;根据各换热器布置的情况,可分为单筒型、双筒型、三筒型;根据应用范围,可分为冷水机型和冷温水机型。目前更多的是将上述的分类
加以综合,如蒸汽单效型、蒸汽双效型、直燃型冷温水机组等。
二、溴化锂的特性
1.溴化锂特性
1.1名称:溴化锂
1.2化学式:LiBr
1.3分子量:86.85
1.4物理性质:极易潮解。一水溴化锂干燥失水可得无水物。
1.5状态:白色立方晶系结晶体或粒状粉末。
1.6密度:3.64g/cm^3
1.7熔点:560℃
1.8沸点1265℃
1.9溶解性:易溶于水、乙醚、乙醇,可溶于甲醇、丙酮、乙二醇等有机溶剂,微溶于吡啶。热的溴化锂溶液可溶解纤维。其水溶液具有强烈的吸湿性,而且,在常温下饱和溴化锂水溶液的浓度达 60% ,浓度越大,温度越低,吸湿能力越强。
1.10化学性质:性质稳定,在大气中不易变质不易分解。可与氨或胺形成一系列的加成化合物,如一氨合溴化程、二氨合溴化锂、三氨合溴化锂、四氨合溴化锂。与溴化铜、溴化高汞、碘化高汞、氰化
高汞、溴化锶等能形成可溶性盐。溴化锂在空气中对钢铁有很强的腐蚀作用,但在真空状态下加入缓蚀剂,基本上不腐蚀金属。
1.11毒性:大剂量服入溴化锂会抑制中枢神经系统,长期吸入可导致皮肤斑疹及中枢神经的紊乱。
1.12应用:溴化锂是一种高效水蒸气吸收剂和空气湿度调节剂。制冷工业广泛用作吸收式制冷剂,有机工业用作氯化氢脱陈剂和有机纤维膨胀剂。医药上用作催眠剂和镇静剂。电池工业用作高能电池和微型电池的电解质。此外,也用于照相行业和分析化学中。
2.溴化锂水溶液性质
2.1 在溴化锂吸收式制冷机中,水作为制冷剂用来产生冷效应,溴化锂溶液作为吸收剂,用来吸收产生冷效应后的冷剂蒸汽。因此,水和溴化锂溶液组成制冷机中的工质对。
2.2溴化锂水溶液是由固体的溴化锂溶质溶解在水溶剂中而成。常压下,水的沸点是100℃,而溴化锂的沸点为1265℃。供制冷机应用的溴化锂,一般以水溶液的形式供应。性状为无色透明液体;浓度不低于50%;水溶液PH值8以上。
2.3 20℃时溴化锂溶解至饱和时量为111.2克,即溴化锂的溶解度为111.2克。溶解度的大小与溶质和溶剂的特性的关,还于温度有关,一般随温度升高而增大,当温度降低时,溶解度减小,溶液中会有溴化锂的晶体析出而形成结晶现象。这一点在溴冷机中是非常重要,运行中必须注意结晶现象,否则常会由此影响制冷机的正常运行。
2.4溴化锂溶液对普通金属有腐蚀作用。尤其在有氧气存在的情况下腐蚀更为严重。
2.5无色液体,有咸味,无毒,加入铬酸锂后溶液呈淡黄色。
2.6溴化锂在水中的溶解度随温度的降低而降低。如图1所示。图中的曲线为结晶线,曲线上的点表示溶液处于饱和状态,它的左上方表示有固体溴化锂结晶析出,右下方表示溶液中没有结晶存在。所谓溶解度是指饱和液体中所含溴化锂无水化合物的质量成分,也就是溴化锂水溶液的质量浓度。由图中曲线可知,溴化锂的质量浓度不宜超过66%,否则在运行中当溶液温度降低时将有结晶析出,破坏制冷机的正常运行。
2.7水蒸气分压力很低,它比同温度下纯水的饱和蒸气压力低得多,因而有强烈的吸湿性。液体与蒸气之间的平衡属于动平衡,此时分子穿过液体表面到蒸气中去的速率等于分子从蒸气中回到液体内的速率。因为溴化锂溶液中溴化锂分子对水分子的吸引力比水分子之间的吸引力强,也因为在单位液体容积内溴化锂分子的存在而使水分子的数目减少,所以在相同温度的条件下,液面上单位蒸气容积内水分子的数目比纯水表面上水分子数目少。由于溴化锂的沸点很高,在所采用的温度范围内不会挥发,因此和溶液处于平衡状态的蒸气的总压力就等于水蒸气的压力,从而可知温度相等时,溴化锂溶液面上的水蒸气分压力小于纯水的饱和蒸气压力,且浓度愈高或温度愈低时水蒸气的分压力愈低。图2表示溴化锂溶液的温度、浓度与压力之间的关系。由图可知,当浓度为50%、温度为25℃时,饱和蒸气压力0.85kPa,而水在同样温度下的饱和蒸气压力为3.167kPa。如果水的饱和蒸压力大于0.85kPa,例如压力为1kPa(相当于饱和温度为7℃)时,上述溴化锂溶液就具有吸收它的能力,也就是说溴化锂水溶液具有吸收温度比它低的水蒸气的能力,这一点正是溴化锂吸收式制冷机的机理之一。同理,如果压力相同,溶液的饱和温度一定大于水的饱和温度,由溶液中产生的水蒸气总是处于过热状态的。
2.8密度比水大,并随溶液的浓度和温度而变。
2.9比热容较小。当温度为150℃、浓度为55%时,其比热容约为2kJ/(kg·K),这意味着发生过程中加给溶液的热量比较少,再加上水的蒸发潜热比较大这一特点,将使机组具有较高的热力系数。
2.10粘度较大。
2.11表面张力较大。
2.12溴化锂水溶液的导热系数随浓度之增大而降低,随温度的升高而增大。
2.13对黑色金属和紫铜等材料有强烈的腐蚀性,有空气存在时更为严得,因腐蚀而产生的不凝性气体对装置的制冷量影响很大。
3 以溴化锂水溶液为工作对的吸收式制冷系统主要缺点是:
热效率低,冷却水消耗量大,设备的密封性要求较高,有一定的腐蚀性。
4以溴化锂水溶液为工作对的吸收式制冷系统主要优点:
由于可以直接利用低参数的热源作动力,是利用太阳能低品位热源的理想的制冷装置;整个机组除功率较小的屏蔽泵外,无其它运动部件,运转安静,运行时基本上没有噪音和振动;以溴化锂~水作为工质对,无毒,无臭,有利于满足环保要求;制冷机在真空状态下进行,无高压爆炸危险;制冷量调节范围广,在 20% ~ 100% 的负荷内可进行制冷量的无级调节;对外界条件变化的适应性强,可在加热蒸汽的压力 0.2 ~ 0.8 MPa ( 表压力 ) 、冷却水温度 20 ~ 35 ℃ 、冷媒水出水温度 5 ~ 15 ℃ 的范围内稳定运转;机组结构简单,对安装基础的要求低,无需特殊的机座;体积小,用地省,制造管理容易,维护费用亦较低廉;运转十分安全。
三、双效溴化锂制冷原理
1. 溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。
2. 在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈
地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。
四. 双效溴化锂制冷机工作原理:
双效溴化锂制冷机,一般形式为三筒式。主要部件由:高压发生器、低压发生器、冷凝器、吸收器、蒸发器、高温换热器、低温换热器、冷凝水回热器、冷剂水冷却器及发生器泵、吸收器泵、蒸发器泵和电气控制系统等组成。
制冷原理为:
⑴吸收器中的稀溶液,由发生器泵分两路输送至高温换热器和低温换热器,进入高温换热器的稀溶液被高压发生器流出的高温浓溶液加热升温后,进入高压发生器。而进入低温换热器的稀溶液,被从低压发生器流出的浓溶液加热升温后,再经凝水回热器继续升温,然后进入低压发生器。
⑵进入高压发生器的稀溶液被工作蒸汽加热,溶液沸腾,产生高温冷剂蒸汽,导入低压发生器,加热低压发生器中的稀溶液后,经节流进入冷凝器,被冷却凝结为冷剂水。
⑶进入低压发生器的稀溶液被高压发生器产生的高温冷剂蒸汽所加热,产生低温冷剂蒸汽直接进入冷凝器,也被冷却凝结为冷剂水。高、低压发生器产生的冷剂水汇合于冷凝器集水盘中,混合后导入蒸发器中。
⑷加热高压发生器中稀溶液的工作蒸汽凝结水,经凝水回热器进入凝水管路。而高压发生器中的稀溶液因被加热蒸发出了冷剂蒸汽,使浓度升高成浓溶液,又经高温热交换器导入吸收器。低压发生器中的稀溶液,被加热升温放出冷剂蒸汽也成为浓溶液,再经低温热交换器进入吸收器。浓溶液与吸收器中原有溶液混合成中间浓度溶液,由吸收器泵吸取混合溶液,输送至喷淋系统,喷洒在吸收器管簇外表面,吸收来自蒸发器蒸发出来的冷剂蒸汽,再次变为稀溶液进入下一个循环。吸收过程所产生的吸收热被冷
却水带到制冷系统外,完成溴化锂溶液从稀溶液到浓溶液,再回到稀溶液循环过程。即热压缩循环过程。
⑸高、低压发生器所产生的冷剂蒸汽,凝结在冷凝器管簇外表面上,被流经管簇里面的冷却水吸收凝结过程产生的凝结热,带到制冷系统外。凝结后的冷剂水汇集起来经节流装置,淋洒在蒸发器管簇外表面上,因蒸发器内压力低,部分冷剂水闪发吸收冷媒水的热量,产生部分制冷效应。尚未蒸发的大部分冷剂水,由蒸发器泵喷淋在蒸发器管簇外表面,吸收通过管簇内流经的冷媒水热量,蒸发成冷剂蒸汽,进入吸收器。
⑺冷媒水的热量被吸收使水温降低,从而达到制冷目的,完成制冷循环。吸收器中喷淋中间浓度混合溶液吸收制冷剂蒸汽,使蒸发器处于低压状态,溶液吸收冷剂蒸汽后,靠絷压缩系统再产生制冷剂蒸汽。保证了制冷过程的周而复始的循环。
第三部分 溴化锂制冷机的操作及维护保养
一、溴化锂制冷机的调试
溴化锂制冷机新出厂或经过检修、溶液再生处理等工作以后,必须由专业技术人员对机组进行调试和重新调试,使至能达到最佳制冷效果。溴化锂制冷机的调试可分为:手动开机程序调试、溶液浓度的调整和工况的测试、调试和运转中出现的一般问题的分析及其处理、验收等几个内容进行。
1、手动开机程序调试(见溴化锂制冷机操作规程的开机程序)
2、溶液浓度的调整和工况的测试应利用浓缩(或稀释)和调整溶液循环量的方法来控制进入发生器的稀溶液的浓度和回到吸收器浓溶液的浓度。这可通过从蒸发器向外抽取冷剂水或向内注入冷剂水,以调整灌注进机组的原始溶液的浓度。冷剂水抽取量应以低负荷工况能维持冷剂泵运行,高工况时接近设计指标为准。工况的测试主要内容为:吸收器和冷凝器进出水温度和流量;冷媒水进出水温度和流量;蒸汽进口压力、流量和温度;冷剂水密度;冷剂系统各点温度;发生器进出口稀溶液、浓溶液以及吸收器的浓度。
3、调试和运转中出现的一般问题的分析及其处理(见溴化锂制冷机故障处理)(电脑自动控制原理介绍)(电脑自动控制柜故障处理)。
4、电气调试主要测试各泵的起动停止是否正常,电流电压是否正常(见手动电气原理接线图)(自动控制电气原理)。
5、验收在工况测试时开始,工况测试应不少于三次;在工况测试过程中,不应开真空泵抽气,以检验气密性;同时要测定真空泵的抽气性能和电磁阀的灵敏度;屏蔽泵运行电流正常,电机表面不烫手(温度不得超过70℃),叶轮声音正常;自控仪器使用正常,仪表准确,开关灵敏。如上述项目均符合要求,应以测试的最高工况的制冷量为准,衡量其是否接近设计标准。一般允许误差为标准的±5%视为
合格。可以签发验收合格证书。
二、溴化锂制冷机的操作规程
1、开机程序
1)打开系统的冷媒水和冷却水阀门,并启动冷媒水和冷却水泵并检查其流量是否达到机组运行要求。
2)启动发生器、吸收器泵,并调整高、低发液位。
3)打开疏水器凝水旁通阀,并缓缓加入蒸汽,使机组逐渐升温,同时注意高发液位。
4)蒸发器冷剂水位上升后启动蒸发器泵,并关闭疏水器旁通阀。
2、关机程序
1)关闭蒸汽。
2)机组继续运行20分钟后关闭溶液泵(使稀浓溶液充分混合,以防机组结晶)。
3)停止冷却水、冷媒水泵。
3、紧急停机
制冷机在运转过程中,当出现下列任何一种情形时,应立即关闭蒸汽阀门、旁通冷剂水至吸收器,打开凝结水疏水器旁通阀,并尽量按正常步骤停机。
1)冷却水、冷媒水断水。
2)发生器、蒸发器、吸收器泵中任何一台不正常运转。
3)断电。
4、维护保养
1)在正常运行情况下,一星期抽真空一次,如发现空气泄入机组应及时抽除。
2)冬季保养时最好充以20—30KPa的氮气,以防空气泄入。
3)及时清洗传热管表面污垢。
4)更换老化的零部件,如隔膜片、视镜垫片等。
以上方法并不是唯一的方法,在实际操作中还应根据具体情况灵活处理。
三、溴化锂制冷机日常维护保养
溴化锂吸收式制冷机是以流体基本状态参数的变化和物质的传热过程理论为基础,利用溴化锂二元溶液的特性及其热力状态变化规律进行制冷循环的。它对机组真空度要求很高。
平时必须对机组采取日常维护保养,其主要内容为:
1、短期停机保养
停机时间在1-2周内时,保养工作主要是保持机组的真空度。应每日早晚两次监测其真空度。为了
准确起见,在观察测压仪表之前把发生器泵和吸收器泵起动运转10min,而后再观察仪表读数并和前一次做出比较。
2、长期停机保养
长期停机,应将蒸发器内的冷剂水全部旁通至吸收器,并使溶液均匀稀释,以防在环境温度下结晶。停机期间的保养方法,尚无统一规定,一般采用真空和充氮两种保养方法。
2.1充氮保养是在保证机组确定无漏时,向机内充入49kPa(表压)左右的氮气,使之始终处于正压状态,使机组出现泄漏也不会漏入空气,而且有泄漏也可随时检漏,十分方便。它的缺点是:由于机组结构流程比较复杂,氮气难以一次性抽除。开机时制冷效率达不到要求,需要继续启动真空泵抽真空。此外还需要耗用购买氮气的资金。
2.2真空保养是在机组停机后须使机内保持较高的真空度。这种方法比较简单,不但节省开支,而且也省去了充氮工艺操作。机组试运行前如果真空度依然合格,可直接开机投入运行。真空保养也有缺点:一旦监测不严或分析失误码率,会漏入空气而造成腐蚀另外如制冷机因密封质量不高而出现泄漏,还得充氮升压检漏。因此停机后与其等出现泄漏再充氮处理,还不如停机后立即充氮更主动。当然,对密封质量优良的制冷机,那就另当别论了。真空保养必须要设专人每天监测两次机组真空度,发现泄漏立即处理,不允许延误时间。
3、运行记录
在运行记录表中,运行日记是最为重要的部份,操作人员应每隔2小时记录检查结果,并与规定的极限值加以比较,使之不超过极限值(如有可能,应把极限值打印在运行日记上,以便于比较)。运行日记就是机组运行的工作卡片,一旦发生事故,运行日记便是查明事故原因的有力根据。运行日记的具体制定应参照制造厂家的使用说明书,我公司使用的SXZ4-175D双效溴化锂运行日记如表二,由早班、中班、晚班的操作人员负责记录。
四、溴化锂制冷机气密性检查、试验
1. 溴化锂吸收式制冷机是一种以热源为动力,通过发生、冷凝、蒸发、吸收等过程来制取0℃以上冷媒水的制冷设备,它利用溴化锂二元溶液的特性及其热力状态变化规律进行循环。水是制冷剂,在真空状态下蒸发的温度较低。因此对机组的真空度要求很高。而机组在运行过程中,系统内的绝对压力很低,与系统外的大气压力存在有较大的压差,外界空气仍有可能渗入系统内。因此必须定期对机组进行气密性检查和试验。
2.关于对机组气密性的校核标准,我国在ZBJ006-89《吸收式冷水机组技术条件》标准中规定:“机组应进行真空检漏,其绝对压力小于65Pa(约0.5mmHg),持续24h绝对压力上升在25Pa(约0.2mmHg)以内为合格”。如果达不到上述标准应重新检漏。
3.检漏和试验是一项细致和技术要求高的工作。
气密性检查的工作程序是:正压找漏→补漏→正压检漏→负压检漏……直至机组气密性达到合格为止。正压检漏就是向机组内充以一定的压力气体,以检查是否存在漏气的部位。严格说,机组漏气是绝对的,不漏气是相对的。为了做到不漏检,可把机组分为几个检漏单元进行。凡漏气部位必须采取补漏措施直至不漏为止。
4.正压检漏和补漏合格后,并不意味着机组绝对不漏。同时要进行负压检漏。高真空的负压检漏结果,才是判定机组气密性程度的唯一标准。
溴化锂制冷机制冷量的大小,制冷机使用寿命的长短,溴化锂溶液质量的变化,主机内部金属材料的腐蚀快慢等,无不与制冷机的真空度有密切关系,因此,保持制冷机的真空度相当重要,应强化抽真空制度,规定每天抽一次真空(从真空泵的保养出发,每天运行一下也是必要的)。此外,防止制冷机泄露也相当重要,可用二种方法确定机组气密度好坏。每天由操作人员记录抽真空前,抽真空后的真空度,把相隔一天的两组数据进行比较,如果第二天抽真空前的真空度与前一天抽真空后的真空度相差很
明显,则可初步确定机组气密性差(注意,抽真空前应记录好当天的大气压,再计算出真空度,作比较时也应考虑当天的大气压)。或者,由运转机械真空泵抽气对制冷量的影响来判定,若抽气后机组制冷量升高,停止运转后又降低,反复数次后可定性确认机组气密性差,须进行检漏。
5、自动抽气装置,对装有这类装置的机组,可检查自动抽气装置每周投入运行的次数,如超过一般范围,则应对机组进行检漏。采用这种方式判断机组气密性好坏,关键在于加强运行管理,记录每次抽气开始和结束的时间,以及总的抽气次数,以利于分析。
五、溶液的管理
1、溴化锂溶液的再生处理
溴化锂溶液是机组的“血液”,经过长期的运行都会发生不同程度的变化。如:颜色由原来的淡黄色变为暗黄、红、白、黑等不正常颜色。溶液的浓度因腐蚀产物而降低,溶液的PH值变成强碱性或者偏酸性,溶液中的缓蚀剂失效,以及各种杂质离子的增加,这都将导致机组的正常制冷能力不能充分发挥,以及机组本身的腐蚀加剧。这时须对该溴化锂溶液进行再生处理。
溴化锂溶液再生时,针对各项指标的变化情况,在密封反应器中添加各种试剂,在高温及有压力的情况下将杂质除去,使溶液指标达到符合化工部行业标准HG/T2822—1996中所规定的范围。溶液再生后,将会具有与新溶液同样的制冷效果和缓蚀效果。这种再生办法只能在溶液厂家里进行。
溴化锂溶液使用年限不长的机组,平时可采用添加铬酸锂等防护剂。
2、溶液的管理
溶液管理的主要内容有碱度,缓蚀剂和表面活性剂的管理。
2.1溶液碱度的管理
溴化锂溶液出厂前,PH值一般调整在9.0~10.5的范围,机组运行后,溶液的碱度会随运行时间的增长而增大,机组的气密性越差,碱度的增大越快,碱度太高,就会引起碱性腐蚀。机组每年开始投入运行前,应用万能PH试纸测试其碱度,如碱度过高,可用氢溴酸(HBr)调整,过低则可用氢氧化锂(LiOH)调整,一直调整到与试样记录的PH值相同为止。
2.2溶液缓蚀剂的管理
为抑制溴化锂溶液对金属材料的腐蚀,常在溶液中添加缓蚀剂,目前采用最多的缓蚀剂为铬酸锂(Li2CrO4),质量分数在0.1%~0.3%范围内。测定溶液中缓蚀剂含量须配备一定的化学分析仪器,一般来说,条件不允许,可用观察颜色来判断缓蚀剂的质量分数。Li2CrO4的质量分数越高,溶液颜色越黄。可将初买来的添加好铬酸锂缓蚀剂的新溶液注入试管,将其封存,以作为以后定期检查时对照的样品。
2.3溶液活性剂的管理
在机组运行状况差,制冷量低,溶液质量达不到要求的情况下,为提高机组性能,一般在溴化锂溶液中添加质量分数0.1%~0.3%的表面活性剂。目前使用较为普遍的为辛醇,它可提高机组吸收器的吸收效果和冷凝器的冷凝效果。辛醇的含量不足可由两方面判定:一是机组性能下降,二是机组抽气时没有辛醇挥发时的刺激性气味。
六、溴化锂制冷机的清洗
中央空调溴化锂制冷机的清洗包括内部清洗和系统清洗
1、溴化锂制冷机内部的清洗
对溴化锂溶液循环系统的化学清洗,是在机组内部腐蚀严重,机组已不能正常工作时,所采取的一种清洗,是使机组内腔清洁的唯一手段,一般4-5年清洗一次。通过清洗,可将机组内腔因腐蚀产生的锈蚀物彻底清除干净,可改善内腔的传热效果,提高喷淋效果,保证屏蔽泵的正常运转,且新灌注的溶液不受杂质的影响,在最佳状态发挥最佳的制冷力,通过对机组内腔壁的预膜,使预膜剂在材质表层发生化学反应,生成惰性的保护膜从而使机组腐蚀减少,使用寿命延长。
2、溴化锂制冷机冷却水冷媒水系统的清洗
在长期的循环过程中会在铜管、管道等内壁形成一层坚硬的污垢及锈质,有时甚至使管道产生堵塞现象,严重影响热质间的热量交换,导致机组制冷量大幅度下降。因此必须定时对水循环系统进行清洗。该清洗包括机组冬季保养时的铜管清洗和水系统清洗。
3、加强了溶液的管理及机组气密性的保持,并不能保证机组不受腐蚀,而只是减缓机组腐蚀的程度,腐蚀仍在发生,铁锈等沉淀物还在生成,由于沉淀物的粘着使溶液热交换器的性能下降,在机组工作时被泵吸起引起喷淋系统的喷嘴堵塞,并且,由于沉淀物的影响,溶液泵的轴承容易磨损,随着磨损的增大,电机将无法运转,因此,我公司采取的措施是每2~3年,在机组停机保养时,把溶液抽到储液罐中,对整个机组内部进行清洗,以去除沉淀物。机组清洗最好使用蒸馏水,若没有蒸馏水,也可用软化水代替。
七、冷媒水与冷却水的管理
水是一种良好的冷却介质,比较廉价,但经过自来水厂处理后仍然不同程度地含有被溶解固体、气体及各种悬浮物,Ca、Na、Fe等的重碳酸盐和硫酸盐是常见的溶解固体,这些污垢,不仅会使管道和设备受到腐蚀,降低使用年限(据有关资料介绍,经常进行化学清洗和长期进行水处理的中央空调系统的使用寿命可以比不采用水处理的系统使用寿命延长1倍以上,经济效益十分明显),而且对于溴化锂制冷机来说,传热管铜管的结垢,将严重影响机组的性能,降低溴化锂制冷机的制冷量(1mm的污垢可使导热系数下降27%~32%)。风机盘管的结垢,不仅使冷热交换效果明显下降,还会堵塞盘管,增
加工程的维修量,因而,水系统的清洗及水质稳定处理相当重要。
每年机组运行后停机进行维修保养,可用工具清洗法,用水枪(或气枪)和一批尼龙刷对传热管的表面进行冲刷。同时,清除管板的铁锈。
每年开机前,对冷却塔进行认真地清洗,清理塔内的污垢及滋生的青苔,对于冷却塔的填料,在不同的使用环境下,随着使用时间的增加,会出现不同程度的老化脆裂,可视实际情况4~6年更换一次。
水系统每2~3年,可请专业清洗公司进行一次化学清洗,进一步清除系统内的锈蚀及粘附在表壁上的污垢,同时使表面金属处于活化状态,随后,在水中投加高浓度的缓蚀阻垢剂,使金属表面迅速生成一种化学保护膜,以阻止介质对设备的侵蚀,从而起到缓蚀阻垢作用,并且使清洗的活化金属表面钝化,为日常处理打下良好的基础。
第四部分 故障分析示例
全负荷生产后,制冷机冷量出现逐年衰减的趋势,在1999年制冷效果恶化,机组的冷量只有额定冷量的50%~60%,故障停机次数也日趋频繁,直接影响了生产。从1999年底开始,对机组进行开孔清洗和检修,同时对回收车间的循环水系统进行了改造和优化。经过三年多的努力,机组的运行基本正常,冷量恢复至额定冷量的85%~90%。
1存在问题
⑴机组运转时内部各点压力、温度偏高。机组的内部各点压力、温度与设计值相比均偏高。以吸收器为例,其稀溶液(运行浓度为53%~55%)设计温度为39~41℃,对应的压力为1403~1117Pa。而在运行过程中,其实际温度为49℃,对应的压力为2460~1988Pa,几乎升高了一倍。
⑵溴化锂溶液性状恶化。溶液颜色为咖啡色,pH值大于10.5,溶液中铬酸锂消耗很快,取样静置
后大量腐蚀物沉淀,导致屏蔽电泵损坏频繁。
⑶不凝性气体排出困难。机组自动抽气装置的窥镜处能观察到大量气泡,且始终排不净。真空泵必须频繁启动抽气,真空泵油易乳化,用量大。机组腐蚀严重,机内溶液和冷剂水分布装置堵塞严重。
⑷机组腐蚀严重。机组热交换器的换热管腐蚀穿孔,造成稀、浓溶液窜漏。高、低压发生器铜管破裂,造成机组停机和冷剂水污染。吸收器浓溶液分布板的小孔堵塞率达50%~80%,严重影响了吸收效果。冷剂水二次喷啉喷头堵塞率达80%以上,蒸发效果极差,冷剂水与冷媒水温差达5℃以上。
以上问题,使得机组的冷量大幅衰减,冷媒水出机组温度达22~26℃,与要求的16~18℃相去甚远,煤气净化装置无法正常运行。
2问题分析与改进措施
机组的冷量大幅衰减的原因是机组的运行状态严重偏离了设计运行状态(变工况运行),其主要原因如下。
2.1机组的原因
过去,溴化锂吸收式制冷机主要用于集中空调系统,其冷媒水进、出口温度按12℃、7℃设计。而对煤气净化装置而言,要求冷媒水(即煤气净化装置所需的低温循环水)的进、出口温度为23℃、16℃。在溴冷机蒸发器内真空度不变的情况下,冷媒水进口温度越高,冷剂水的蒸发量就越大。也就是说,焦炉煤气净化装置所采用的溴冷机,其蒸发器工作压力高于空调型机组。
随着蒸发压力的提高,在机组吸收器内溴化锂浓溶液吸收冷剂蒸汽的传质推动力升高,吸收器的吸收能力相应提高。随着冷媒水进口温度的升高,机组的冷量会相应提高,冷媒水进机组的温度每升高1℃,机组的冷量可上升3%~5%。但这只适用于特定范围内(冷媒水进口温度上升3~5℃以内),因为蒸发
器的蒸发量加大后,而吸收器、发生器及冷凝器的工作能力是已经确定的,那么吸收器的吸收能力就会不够,蒸发器蒸发出的水汽不能被有效吸收,造成吸收器的工作温度和压力上升;相应的发生器及冷凝器的工作能力不足,造成机组稀溶液的发生效果不好,冷凝温度升高。机组就长期处于变工况运行状态,各个部位的工作温度、压力均偏离设计值。
2.2外部条件的影响
⑴机组超负荷运行。溴冷机所制取的低温水用做煤气净化装置的二段循环冷却水,而一段循环冷却水为敞开式循环冷却水,致使净化装置的一段冷却能力不足、冷却效果不好,大量热负荷下移至二段,使得低温水进机组温度进一步提高,夏季可达25~28℃,工况偏离程度进一步加大,溴冷机处于超负荷状态,难以维持长期运行。
⑵真空管理。溴冷机是高真空状态下运行的制冷设备,真空度一旦出现问题,首先是制冷量下降,其次引起运行故障,严重时危及机组的使用寿命。真空管理的目的就确保溴冷机始终处于最佳真空状态,其核心是将机内的不凝性气体含量控制在允许范围。不凝性气体的存在,增加了吸收过程的阻力,削弱了传质传热过程,即使少量不凝性气体也会造成冷量的大幅衰减。不凝性气体中氧气的存在,是造成机组内部腐蚀的主要原因,所以要严格控制机内氧的含量。
⑶循环冷却水的水质管理。循环冷却水存在的问题是旁滤、杀菌灭藻效果不好,使得水中沉积物和污垢过多,影响了冷却效果,造成吸收器、冷凝器温度过高,机组工况偏离程度上升。
⑷溴化锂溶液的日常管理。在开工初期,对溴化锂溶液的pH值和铬酸锂含量等指标没有严格控制。加上蒸汽减温减压装置的能力不足,进入机组蒸汽的温度一般控制在180~190℃,使得溴化锂溶液中胶泥状络合物及低价铬产物增多,溶液性状劣化。
多方面的原因使机组长期处于变工况运行状态,而且偏离程度越来越大,造成机内腐蚀严重,溴化锂溶液、冷剂水分布装置堵塞,冷量大幅衰减,生产局面越来越被动。
针对以上问题,对机组进行了开孔清洗,清除大部分腐蚀产物,溶液进行更换再生以及更换窜漏的换热器和破裂铜管。同时对减温减压装置进行了改造,将蒸汽温度控制在155~165℃。对车间一段循环冷却水系统、制冷循环水系统进行了改造和水量的平衡、优化,有效减少了热负荷下移,减轻了溴冷机的负担。建立健全溴冷机机组的各项管理制度,并落实到位。目前机组的工况有了较大改观,以吸收器为例,稀溶液工作温度已控制在43℃以下。冷媒水出口温度也降至20℃以下,机内的腐蚀已得到控制,不再继续恶化。
3经验总结
通过几年机组运行和维修保养的实践表明,必须从以下几方面对机组进行全过程管理。
⑴必须针对冷媒水温的变化进行仔细核算和专门设计。吸收器、冷凝器及高、低压发生器要作一定程度的放大,溶液及冷剂水循环也应做相应的调整。
⑵由于冷媒水进口温度要求为23℃,蒸发器和吸收器的工作压力上升问题无法回避,因此机组的冷量选择应比所需冷量大,即有一定的裕量,可有效缓解这一矛盾。
⑶对机组本体的制造水平和检测手段一定要精益求精,使其具有良好的气密性,尽量消除外漏对机组的影响。
⑷机组的真空管理工作以控制不凝性气体含量为核心。还必须强调两点:一是因机组的绝对压力为水汽分压与不凝性气体分压之和。因此,单纯用测绝对压力的方法来管理机组真空,是无法判别机组内部不凝性气体量的,应分别测出绝对压力和溶液的水汽饱和压力,再以两者之差为参考,来判别机内不凝性气体的含量。二是机组用旋片式真空泵,其极限真空度要定期检查,实测值不得大于1.33Pa。
⑸溶液的日常管理最重要的是检测和控制溶液的pH值和缓蚀剂的含量。
⑹完善的冷却水管理应包括控制水温、控制循环量、控制系统水量平衡和水质稳定处理等工作,其核心是水质稳定处理工作,必须确保污垢系数小于0.086m2•℃/kW。
⑺机组自身及外部的计器仪表应准确无误,只有准确了解各个部位的参数,才能正确掌握和判断机组的运行效果和质量。
因篇幅问题不能全部显示,请点此查看更多更全内容