搜索
您的当前位置:首页正文

上海市浦东新区2015届高三一模数学试卷含答案

来源:六九路网


浦东新区2014学年度第一学期期末质量测试

高三数学 2015.1

注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.

一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.

x1.不等式21的解为 . 2.已知复数z满足z(1i)2(i为虚数单位),则z . 3.关于x,y的方程x2y22x4ym0表示圆,则实数m的取值范围是 . 4.函数ysinx3cosx的最大值为 . 5.若limx0,则实数x的取值范围是 .

nn1126.已知一个关于x,y的二元线性方程组的增广矩阵是012,则xy= .

x2y21的两条渐近线的夹角为 . 7.双曲线31318.已知yf(x)是函数f(x)xa的反函数,且f(2)1,则实数a . 3含x项系数为 . x)4的展开式中,

10.定义在R上的偶函数yf(x),在[0,)上单调递增,则不等式f(2x1)f(3)的解是 .

11.如图,已知PA平面ABC,ACAB,APBC,CBA30,D、E分别是BC、AP的中点. 则异面直线AC与DE所成角的大小为 .

9.二项式(2xP E A12.若直线l的方程为axbyc0(a,b不同时为零),则

C 下列命题正确的是 .

(1)以方程axbyc0的解为坐标的点都在直线l上; (2)方程axbyc0可以表示平面坐标系中的任意一条直线; (3)直线l的一个法向量为(a,b); (4)直线l的倾斜角为arctan().

BD

ab二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.

13.设椭圆的一个焦点为(3,0),且a2b,则椭圆的标准方程为 ( )

·1·

x2y21 (A) 4(A)

x2y22y1 (C)x21 (B) 24y2x21 (D) 214.用1,2,3,4、5组成没有重复数字的三位数,其中是奇数的概率为 ( )

1234 (B) (C) (D) 555515.下列四个命题中,为真命题的是 ( )

(A)若ab,则ac2bc2 (C)若ab,则a2b2

(B)若ab,cd则acbd

11

(D)若ab,则

ab

16.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 ( )

(A) 84 (B) 78 (C)81 (D) 96 17.等差数列{an}的前n项和为Sn,若S17170,则a7a9a11的值为 ( )

(A) 10 (B) 20 (C)25 (D) 30

18.“直线l垂直于△ABC的边AB,AC”是“直线l垂直于△ABC的边BC”的 ( )

(A)充分非必要条件 (C)充要条件

(B)必要非充分条件 (D)既非充分也非必要条件

1x, x019.函数f(x)=的零点个数为 ( ) x2lnx, x>0(A) 0 (B) 1 (C)2 (D) 3

20.某股民购买一公司股票10万元,在连续十个交易日内,前五个交易日,平均每天上涨5%,后五个交易日内,平均每天下跌4.9%. 则股民的股票赢亏情况(不计其它成本,精确到元)( )

(A)赚723元 (B)赚145元 (C)亏145元 (D)亏723元 21.已知数列an的通项公式an2n,nN,则

a1a2a2a3a4a4(A)16096

a3a5a5

a3a4a6a2012a2014a2013 ( ) a2015(B)16104 (C)16112 (D)16120

f(x)22.如果函数yf(x)在区间I上是增函数,而函数y在区间I上是减函数,那么称函数

x123yf(x)是区间I上“缓增函数”,区间I叫做“缓增区间”. 若函数f(x)xx是区间I22上“缓增函数”,则“缓增区间”I为 ( )

(A) [1,) (B) [0,3] (C)[0,1] (D) [1,3]

rrrr23.设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为2,则 ( )

rr(A)若确定,则|a|唯一确定 (B)若确定,则|b|唯一确定

rr

(C)若|a|确定,则唯一确定 (D)若|b|确定,则唯一确定

·2·

24.已知x1,x2是关于x的方程x2mx(2m1)0的两个实数根,则经过两点A(x1,x12),

三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)

已知函数ylgx2y21公共点的个数是 ( ) B(x2,x2)的直线与椭圆164 (C)0 (A) 2 (B) 1(D)不确定

2

1x的定义域为集合A,集合B(a,a1). 若BA,求实数a的取值范围. 1xB 26.(本题满分8分)

如图所示,圆锥SO的底面圆半径|OA|1,其侧面展开一个圆心角为

S图是

2的扇形,求此圆锥的体积. 3 27.(本题满分8分)

已知直线yOA1x与抛物线y22px(p0)交于O、A两点(F为抛物线的焦点,O为坐标原2点),若AF17,求OA的垂直平分线的方程.

28.(本题满分12分,第1小题6分、第2小题6分)

在△ABC中,角A、B、C所对的边分别为a、b、c,且bc,A的平分线为AD,若

uuuruuuruuuruuurABADmABAC.

(1)当m2时,求cosA的值;

a23)时,求实数m的取值范围. (2) 当(1,b3

29.(本题满分13分,第1小题6分、第2小题7分)

在数列{an},{bn}中,a13,b15,an1bn4a4*,bn1n(nN). 22·3·

(1)求数列{bnan}、{anbn}的通项公式;

(2)设Sn为数列{bn}的前n项的和,若对任意nN*,都有p(Sn4n)[1,3],求实数p的取值范围. 30.(本题满分8分)

某风景区有空中景点A及平坦的地面上景点B.已

AB与地面所成角的大小为60,点A在地面上的射影为

ABBM如图.请在地面上选定点M,使得达到最大值.

AM

31.(本题满分10分,第1小题4分、第2小题6分)

设函数f(x)A知

H,

HBMsinx(0x). x2(1)设x0,y0且xy2,试比较f(xy)与f(x)的大小;

(2)现给出如下3个结论,请你分别指出其正确性,并说明理由.

①对任意x(0,2]都有cosxf(x)1成立;

x2x4x6x8x10②对任意x0,都有f(x)1成立; 33!5!7!9!11!2③若关于x的不等式f(x)k在(0,]有解,则k的取值范围是(,).

2

32.(本题满分12分,第1小题5分、第2小题7分)

已知三角形△ABC的三个顶点分别为A(1,0),

B(1,0),C(0,1).

(1)动点P在三角形△ABC的内部或边界上,且到三边AC,AB,BC的距离依次成等差数列,求点P的

方程;

·4·

点P轨迹

O

(2)若0ab,直线l:yaxb将△ABC分割为面积相等的两部分,求实数b的取值范围.

浦东新区2014学年度第一学期期末质量测试

高三数学参考答案及评分标准

一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一

律得零分. 1.x0; 2.1i; 3.(,5); 4.2; 5.(1,1); 6.6; 7.8.1; 9.24; 10.(1,2); 11.arccos

二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确

的,选对得 3分,否则一律得零分. 13.(A) ; 14.(C); 15.(C); 16.(B); 17.(D); 18.(A); 19.(C); 20.(D); 21.(A); 22.(D); 23.(B);24.(A).

三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)

解:集合A(1,1),„„„„„„„„„„„„„„„„„„„„„„„„„„3分

; 32(arctan7); 12.(1)、(2)、(3). 4a1BA因为,所以 ,1a0.„„„„„„„„„„„„„6分

a11即a1,0. „„„„„„„„„„„„„„„„„„„„„„„„„„„7分

26.(本题满分8分)

解:因为|OA|1,所以弧AB长为2,„„„„„„„„„„„„„„„„„2分

又因为BSA222,所以SA3.„„„„„„„„4分 ,则有SA33在RtSOA中,|OA|1.hSOSA2OA222, „„„„„„„6分 所以圆锥的体积V

27.(本题满分8分)

1222rh. „„„„„„„„„„„„„„„8分 33·5·

y22px1解:OA的方程为:yx. 由 得x28px0, 12yx2所以A(8p,4p),„„„„„„„„„„„„„„„„„„„„„„„„„„3分

由AF17,可求得p2.„„„„„„„„„„„„„„„„„„„„„5分 所以A(16,8),AO中点M(8,4).„„„„„„„„„„„„„„„„„„„6分 所以OA的垂直平分线的方程为:2xy200.„„„„„„„„„„„„8分 28.(本题满分12分,第1小题6分、第2小题6分)

uuuruuuruuuruuurAA解:(1)由bc. 又ABAD2ABAC. 得b(bcos)cos2bccosA„„„2分

22Acos22cosA„„„„„„„„„„„„„„„„„„„„„„„„„4分

21cosA12cosA. cosA. „„„„„„„„„„„„„„„„„6分 23uuuruuuruuuruuur1(2)由ABADmABAC. 得cosA;„„„„„„„„„„„„„8分

2m111b2c2a22b2a21a(,),„„„„„„„10分 又cosA=12322bc2b2b1113(,),m(,2).„„„„„„„„„„„„„„„„„12分 所以

2m132229.(本题满分13分,第1小题6分、第2小题7分)

2bna12,bn1n2,bn1an1(bnan),

2221即数列{bnan}是首项为2,公比为的等比数列,

21n1所以bnan2().„„„„„„„„„„„„„„„„„„„„„„3分

211 an1bn1(anbn)4,an1bn18(anbn8),a1b180,

22*所以,当nN时,anbn80,即anbn8.„„„„„„„„„„6分

解:(1)因为an1anbn81n121nS4n[1()], b4() (2)由 得,1n1nn322bnan2()22p12p1[1()n],1[1()n]3, p(Sn4n)32321n12p3因为1()0,所以.„„„„„„„„„8分 1n1231()n1()22·6·

当n为奇数时,

111()n212p3且131(1)n1()n2211 当n为偶数时,随n的增大而减小, 1n1n1()1()2242p912p33,2p. 且,1231(1)n331()n22综上,2p3.„„„„„„„„„„„„„„„„„„„„„„„„„13分

30.(本题满分8分)

解:因为AB与地面所成的角的大小为60,AH垂直于地面,BM是地面上的直线,

所以ABH60,ABM60.

1随n的增大而增大, 1n1()22p32,p3;„„„„„„„„„10分 ,132ABBMAM,„„„„„„„„„„„„„„„„„„„„„„2分

sinMsinAsinBABBMsinMsinAsinMsinBM∴ AMsinBsinBsinMsinBcosMcosBsinM1cosBsinMcosM

sinBsinBB2cos22sinMcosMcotBsinMcosM„„„„„„„„„„„4分 sinB2cot30sinMcosM3sinMcosM2sin(M30).„„„„„6分

ABBM达到最大值,

AM此时点M在BH延长线上,BHHM处.„„„„„„„„„„„„„„8分

当MB60时,

·7·

31.(满分10分,第1小题4分、第2小题6分) 解:(1)方法一(作商比较):

显然f(x)0,f(xy)0,

f(xy)sin(xy)xxsinxcosyxcosxsiny. „„„1分

f(x)xysinxxsinxysinx0cosy1因为0xsinxcosyxsinx.„„„„„„„„„„„2分

xsinx00sinyy又0xcosxsinyysinx.„„3分 0xtanx0xcosxsinx所以0xsinxcosyxcosxsinyxsinxysinx. f(xy)1f(xy)f(x).„„„„„„„„„„„„„„„„4分 即

f(x)于是

方法二(作差比较):

0cosy1xsinx(cosy1)0.„„„„„„„„„„„„„1分

xsinx00sinyy又xcosxsinyysinx0.„„2分 0xtanx0xcosxsinxxsin(xy)(xy)sinxf(xy)f(x)

(xy)xxsinx(cosy1)(xcosxsinyysinx)0.

(xy)x即f(xy)f(x).„„„„„„„„„„„„„„„„„„„„„„„„4分

x1(2)结论①正确,因0x.0sinxxtanx1.

2sinxcosxcosxf(x)1.„„„„„„„„„„„„6分

因为

·8·

x2x4x6x8x10结论②错误,举反例: 设g(x)1.(利用计算器)3!5!7!9!11!f(0.5)g(0.5)3.30931357610140等„„„„„„„„„„„„8分

(f(0.6)g(0.6)3.49376616310130, f(1)g(1)1.59827354910100,

f(0.7)g(0.7)0,f(0.8)f(0.8)0,f(0.9)g(0.9)0均可).

sinx结论③正确,由f(xy)f(x)知f(x)在区间(0,]上是减函数.

2x2所以f(x)f()f(x),又f(x)1,

22sinx所以f(x)的值域为[,1).

x2要使不等式f(x)k在(0,]有解,只要k即可.„„„„„„„„„10分

2

32.(满分12分,第1小题5分、第2小题7分) 解:(1)法1:设点P的坐标为x,y,则由题意可知:

xy122xy1xy12y,„„„„„„„„„„„„„„„„„„„4分 所以22xy12y,由于xy10,xy10,y0,„2分

化简可得:y21(22x22)„„„„„„„„„„„„„„5分 法2:设点P到三边AC,AB,BC的距离分别为d1,d2,d3,其中d2y,|AB|2|AC|2|BC|2.所以 于是点P的轨迹方程为y21(

y21„„„4分 22d1yd312222x22)„„„„„„„„5分 d1d32y(2)由题意知道0ab1,

情况(1)ba.

直线l:ya(x1),过定点A1,0,此时图像如右下: 由平面几何知识可知,直线l过三角形的重心0,,

131从而ba.„„„„„„„„„„„„„„„„„„7分

3b1,a线l与两边BC,AC分别相交,设其交点分别为D,E,则直与三角形两边的两个交点坐标Dx1,y1、Ex2,y2应该满足方程

情况(2)ba.此时图像如右下:令y0得x·9·

故直线l组:

yaxb. yx1xy10因此,x1、x2是一元二次方程:a1xb1a1xb10的两个根.

即a1x2a(b1)x(b1)0, 由韦达定理得:x1x2222b12a21而小三角形与原三角形面积比为x1x2,即x1x2.

12b1所以

2211a1a2亦即b1. b12a12,22,

1再代入条件ba,解得0a, 32从而得到b12,1.„„„„„„„„„„„„„„„„„„„„„„„11分

23综合上述(1)(2)得:b12,1.„„„„„„„„„„„„„„„„„12分

23解法2:由题意知道0ab1 情况(1)ba.

直线l的方程为:ya(x1),过定点A1,0, 由平面几何知识可知,直线l应该过三角形的重心0,, 从而ba131.„„„„„„„„„„„„„„„„„„„„„„„„„„7分 3情况(2)ba.

设直线l:yaxb分别与边BC:yx1,x0,1, 边AC:yx1,x1,0的交点分别为点D,E, 通过解方程组可得:D(1bab1bab,),E(,),又点C(0,1), a1a1a1a10∴SCDE1111b2a11ba1ab11a221=,同样可以推出1b.

2a12ab1a1211a亦即b1,再代入条件ba,解得0a,

23从而得到b121.„„„„„„„„„„„„„„„„„„„„„11分

,23·10·

21综合上述(1)(2)得:b1,.„„„„„„„„„„„„„„„12分

23

解法3:

情况(1)ba.

直线l的方程为:ya(x1),过定点A1,0, 由平面几何知识可知,直线l过三角形的重心0,,

131.„„„„„„„„„„„„„„„„„„„„„„„„„„„7分 3情况(2)ba.

b令y0,得x1,故直线l与两边BC,AC分别相交,

a设其交点分别为D,E,当a不断减小时,为保持小三角形面积总为原来的一半,则b也不

从而ba断减小.

当DE//AB时,CDE与CBA相似,由面积之比等于相似比的平方.

21b2,所以b1, 12221,.„„„„„„„„„„„„„„„„„„„„„„12分 综上可知b123可知

·11·

因篇幅问题不能全部显示,请点此查看更多更全内容

Top