相似三角形的性质
第一课时
教学目标
1、掌握相似三角形的性质定理1的内容及证明,使学生进一步理解相似三角形的概念。
2、能运用相似三角形的性质定理1来解决有关问题。 3、通过与“全等三角形的对应线段相等”进行类比,渗透类比的数学思想,让学生感受数学的和谐美,并进一步养成严谨科学的学习品质。
教学重点:理解相似三角形的性质定理l并能初步运用 教学难点:相似三角形的性质定理l的证明 教具准备:多媒体课件 教学过程
一、复习回顾与思考
1、三角形有哪些主要线段?
2、到目前为止,我们已经学习了相似三角形的哪些性质?什么是相似比?
3、如下图,△ABC≌△DEF,AH、DG是对应高,请说出这两个全等三角形的有关性质。
教师重点关注:学生能否准确回忆相似三角形对应角相等,对应边成比例;能否理解两个全等三角形的对应边上的高相等。
二、类比与猜想
1、因为“全等”是“相似”的特例,请猜想:
如下图,△ABC∽△DEF,它们的相似比为k,AH、DG是对应高,请说说AH与DG的关系
2、因为“全等三角形的对应高、对应中线、对应角平分线相等”时一步猜想:相似三角形对应中线的比、对应角平分线的比也都等于相似比吗?
引导学生:从全等三角形相关性质入手,通过类比,猜想出相似三角形的对应高的比、对应中线的比、对应角平分线的比也都等于相似比。
再进一步:如何证明你所发现的结论? 三、探究性质的证明
定理1:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比。
先引导学生证明对应高的相似性质:鼓励学生自己画图,并写出“已知、求证”,教师点拨纠正。
如上图,已知,△ABC∽△DEF,它们的相似比为k,AH、DG是对应高。 求证:
证明思路:寻找两个三角形相似所欠缺的条件,根据已有相似三角形的性质得到。
再鼓励学生按上述方法,因类比证明对应中线、对应角平分线的相似性质。 四、应用举例:
例1:已知:△ABC∽△DEF,BC=3.6cm,EF=6cm,AH是△ABC的一条中线,且AH=2.4cm,
求:△DEF的中线DG的长。
分析:教师与学生一起边画图,边分清求解中各线段的含义,重点关注学生能否主动利用相似三角形性质定理1答题。
答完后,教师可再给出一些变式题,如本题中的AH、DG分别改为相应的高或角平分线时的求法。
*例2:如图,△ABC中∠ACB=90º,AD⊥AB于D,AE是∠CAB的平分线,交CD于点F,交CB于点E。 求证:。
本题的已知条件和图形都比较复杂,引导学生认真读题,理清条件,主动联想本节课所学新知识。(只要证明△ACD∽△ABC)
五、本节内容小结
本节主要学习了性质定理1及其证明,重点要掌握综合运用相似三角形的判定与性质的思维方法,解题运用时要注意“对应”。
*教师指出:相似三角形的其他对应线段的比也都等于
相似比,如:对应中位线的比,今后要学习的外接圆半径的比,内切圆半径的比等等。 六、作业:
课内:习题22.2第2、4题 课外:习题22.2第1、3题 七、教学反思
通过作业可以发现很多同学在运用相似三角形性质解决实际问题时,对应边与角易出现错误,有一部分同学对全等和相似的关系理解不透。
因篇幅问题不能全部显示,请点此查看更多更全内容