您好,欢迎来到六九路网。
搜索
您的当前位置:首页南宁中考试题

南宁中考试题

来源:六九路网
word文档 2022年中考往年真题练习: 南宁市中等学校招生考试 数 学 本试卷分第Ⅰ卷和第Ⅱ卷, 满分120分, 考试时间120分钟. 注意: 答案一律填写在答题卷上, 在试题卷上作答无效.考试结束, 将本试卷和答题.........卷一并交回. 第Ⅰ卷(挑选题 共36分) 一、 挑选题: (本大题共12小题, 每小题3分, 共36分) 每小题都给出代号为A、 B、 C、 D的 四个结论, 其中只有一个是 正确的 .使用机改卷的 考生, 请用2B铅笔在答........题卷上将选定的 答案标号涂黑;使用非机改卷的 六县考生, 请用黑(蓝黑) 墨水笔将每...........小题选定的 答案的 序号填写在答题卷相应的 表格内. 1的 相反数是 ( ) 31A.3 B. C.3 31.D.1 32.图1是 一个五边形木架, 它的 内角和是 ( ) 图1 A.720° B.0° C.360° D.180° 3.今年6月, 南宁市举行了第五届泛珠三角区域经贸合作洽谈会. 据估算, 本届大会合同投资总额达2260亿元. 将2260用科学记数法表示为(结果保留2个有效数字) ( ) A.2.310 3B.2.210 3C.2.2610 3 D.0.2310 44.与左边三视图所对应的 直观图是 ( ) A. B. C. D. 1x≤15.不等式组2的 解集在数轴上表示为( ) 2x3 -1 0 1 2 A. -1 0 1 2 B. -1 0 1 2 C. -1 0 1 2 D. 6.要使式子x1有意义, x的 取值范围是 ( ) xA.x1 B.x0 C.x1且x0 D.x≥-1且x0 7.如图2, 将一个长为10cm, 宽为8cm的 矩形纸片对折两次后, 沿所得矩形两邻边中点的 连线(虚线) 剪下, 再打开, 得到的 菱形的 面积为( ) 文档 word文档 A.10cm 22B.20cm 2C.40cm 2D D.80cm 2A C 图2 B 8.把多项式2x8x8分解因式, 结果正确的 是 ( ) A.2x4 2 B.2x4 2 C.2x2 2 D.2x2 29.在反比例函数y可以是 ( ) A.1 B.0 10.如1k的 图象的 每一条曲线上, y都随x的 增大而增大, 则k的 值x C.1 3, D.2 图AB是⊙O的 直径, 弦CDAB于点E,CDB30°,⊙O的半径为3cm, 则弦CD的 长为( ) A. 3cm 2 B.3cm C.23cm D.9cm y C A E B 3 O 1 x O 图3 D 2图4 11.已知二次函数yaxbxc(a0) 的 图象如图4所示, 有下列四个结论: ①b0②c0③b24ac0④abc0, 其中正确的 个数有( ) A.1个 B.2个 C.3个 D.4个 12.从2、 3、 4、 5这四个数中, 任取两个数p和qpq, 构成函数ypx2和yxq, 并使这两个函数图象的 交点在直线x2的 右侧, 则这样的 有序数对p,q共有( ) A.12对 B.6对 C.5对 D.3对 文档 word文档 第Ⅱ卷(非挑选题, 共84分) 二、 填空题: (本大题共6小题, 每小题2分, 共12分) 13.如图5, 直线a、 b被c所截, 且a∥b,1120°,则2 °. 14.计算: ab22a . 北 A 45° 东 P C A′ c A O 30° a 1 灯 三角尺 2 b B 投影 图5 图6 图7 15.三角尺在灯泡O的 照射下在墙上形成影子(如图6所示) . 现测得OA20cm,OA50cm, 这个三角尺的 周长与它在墙上形成的 影子的 周长的 比是 . 16.有五张分别印有圆、 等腰三角形、 矩形、 菱形、 正方形图案的 卡片(卡片中除图案不同外, 其余均一样) , 现将有图案的 一面朝下任意摆放, 从中任意抽取一张, 抽到有中心对称图案的 卡片的 概率是 . 17.如图7, 一艘海轮位于灯塔P的 东北方向, 距离灯塔402海里的 A处, 它沿正南方向航行一段时间后, 到达位于灯塔P的 南偏东30°方向上的 B处, 则海轮行驶的 路程AB为 _____________海里(结果保留根号) . 18.正整数按图8的 规律排列.请写出第20行, 第21列的 数字 . 第一列 第二列 第三列 第四列 第五列 … 1 2 5 10 17 第一行 … 4 3 6 18 第二行 11 … 9 8 7 12 19 第三行 … 16 15 14 20 第四行 13 … 25 24 23 22 21 第五行 …… 图8 考生注意: 第三至第题为解答题, 要求在答题卷上写出解答过程. ...三、 (本大题共2小题, 每小题满分6分, 共12分) 19.计算: 1200931sin60° 22120.先化简, 再求值: 文档 word文档 111x2, 其中x2 2x1x1 四、 (本大题共2小题, 每小题满分10分, 共20分) 21.为迎接国庆60周年, 某校举行以“祖国成长我成长”为主题的 图片制作比赛, 赛后整理参赛同学的 成绩, 并制作成图表如下: 分数段 60≤x<70 70≤x<80 80≤x<90 90≤x<100 频数 30 m 60 20 频率 0. 15 0. 45 n 0. 1 频数 120 90 60 30 0 60 70 80 90 100 图9 请根据以上图表提供的 信息, 解答下列问题: 分数(分) (1) 表中m和n所表示的 数分别为: m__________,n__________; (2) 请在图9中, 补全频数分布直方图; (3) 比赛成绩的 中位数落在哪个分数段? (4) 加入比赛成绩80分以上(含80分) 可以获得奖励, 那么获奖率是 几 ? 22.已知△ABC在平面直角坐标系中的 位置如图10所示. (1) 分别写出图中点A和点C的 坐标; (2) 画出△ABC绕点C按顺时针方向旋转90°后的△ABC; (3) 求点A旋转到点A所经过的 路线长(结果保留π) . y 8 7 6 5 A 4 B 3 2 1 C x 0 1 2 3 4 5 6 7 8 图10 文档 word文档 五、 (本大题满分10分) 23.如图11, PA、 PB是 半径为1的 ⊙O的 两条切线, 点A、 B分别为切点, APB60°,OP与弦AB交于点C,与⊙O交于点D. (1) 在不添加任何辅助线的 情况下, 写出图中所有的 全等三角形; A (2) 求阴影部分的 面积(结果保留π) . C D O P B 图11 六、 (本大题满分10分) 24.南宁市狮山公园计划在健身区铺设广场砖.现有甲、 y元 乙两个工程队参加竞标, 甲工程队铺设广场砖的 造价48000 y甲(元) 与铺设面积xm2的 函数关系如图12所示;28000 乙工程队铺设广场砖的 造价y乙(元) 与铺设面积0 xm2满足函数关系式: y乙kx. 500 1000 图12 xm2 (1) 根据图12写出甲工程队铺设广场砖的 造价y甲(元) 与铺设面积xm2的 函数关系式; (2) 加入狮山公园铺设广场砖的 面积为1600m, 那么公园应挑选哪个工程队施工更合算? 七、 (本大题满分10分) 25.如图13-1, 在边长为5的 正方形ABCD中, 点E、 F分别为BC、 DC边上的 点, 且AEEF, BE2. (1) 求EC∶CF的 值; (2) 延长EF交正方形外角平分线CP于点P(如图13-2) , 试判断AE与EP的 大小关系, 并说明理由; (3) 在图13-2的 AB边上是 否存在一点M, 使得四边形DMEP是 平行四边形?若存在, 请给予证明;若不存在, 请说明理由. A D A D F P F B E C B E C 图13-1 图13-2 2文档 word文档 八、 (本大题满分10分) 26.如图14, 要设计一个等腰梯形的 花坛, 花坛上底长120米, 下底长180米, 上下底相距80米, 在两腰中点连线(虚线) 处有一条横向甬道, 上下底之间有两条纵向甬道, 各甬道的 宽度相等.设甬道的 宽为x米. (1) 用含x的 式子表示横向甬道的 面积; (2) 当三条甬道的 面积是 梯形面积的 八分之一时, 求甬道的 宽; (3) 根据设计的 要求, 甬道的 宽不能超过6米. 加入修建甬道的 总费用(万元) 与甬道的 宽度成正比例关系, 比例系数是 5. 7, 花坛其余部分的 绿化费用为每平方米0. 02万元, 那么当甬道的 宽度为几 米时, 文档 所建花坛的 总费用最少?最少费用是 几 万元? 图14 word文档 2022年中考往年真题练习: 南宁市中等学校招生考试 数学试题参与评分标准 一、 挑选题(本大题共12小题, 每小题3分, 共36分) 题号 答案 1 D 2 B 323 A 4 A 5 C 6 D 7 A 8 C 9 D 10 B 11 C 12 B 二、 填空题(本大题共6小题, 每小题2分, 共12分) 13.60 14.ab 15.24 16. 17.40340 18.420 55三、 (本大题共2小题, 每小题满分6分, 共 12分) 19.解: 1200931sin60° 221=1332 ······················································································ 4分 22=12 ········································································································ 5分 ··········································································································· 6分 3·20.解: 111x2 x1x21=xx1x1·x2 ············································································· 3分 x11x22 ······································································································· 4分 当x2时, 原式222 ······································································· 5分 ················································································· 6分 4 ·四、 (本大题共2小题, 每小题满分10分, 共20分) ,n0.3; ·21.解: (1) m90···································································· 4分 (2) 图略. ································································································· 6分 (3) 比赛成绩的 中位数落在: 70分~80分. ······················································· 8分 (4) 获奖率为: 6020100%=40%(或0. 3+0. 1=0. 4) ································· 10分 20022.解: (1) A0,·································································· 2分 4、 C31,;·(2) 图略. ································································································· 6分 (3) AC32 ··························································································· 7分 文档 word文档 AA9032π ························································································ 9分 18032π ···································································································· 10分 2五、 (本大题满分10分) 23.解: (1) △ACO≌△BCO,·················· 3分 △APC≌△BPC,△PAO≌△PBO ·(写出一个全等式子得1分) (2) PA、 PB为⊙O的 切线 A ················ 5分 PO平分APB,PAPB,PAO90° ····························································· 6分 POAB ·C D O P 由圆的 对称性可知: S阴影S扇形AOD ······················· 7分 11APB60°30 B 22························································ 8分 AOP90°APO90°3060 ·在Rt△PAO中, APOS阴影S扇形AOD60π12 ·········································································· 9分 360π ·················································································· 10分 6六、 (本大题满分10分) 24.解: (1) 当0≤x≤500时, 设y甲k1x, 把500,28000代入上式得: 28000500k1,k12800056 500y甲56x ··································································································· 2分 当x≥500时, 设y甲k2xb, 把500,28000、 1000,48000代入上式得: 500k2b28000 ····················································································· 3分 1000kb480002解得: k240 ···························································································· 4分 b8000y甲40x8000 56x0≤x500y甲 ········································································ 5分 40x8000x≥500(2) 当x1600时, y甲401600800072000 ········································· 6分 文档 word文档 y乙1600k ···································································· 7分 ①当y甲y乙时, 即: 720001600k 得: k45 ···································································································· 8分 ②当y甲y乙时, 即: 720001600k 得: 0k45 ······························································································· 9分 ③当y甲y乙时, 即720001600k, k45 答: 当k45时, 挑选甲工程队更合算, 当0k45时, 挑选乙工程队更合算, 当······················································ 10分 k45时, 挑选两个工程队的 花费一样. ·七、 (本大题满分10分) 25.解: (1) AEEF A D 2390° 四边形ABCD为正方形 BC90° 1 1390° F ························································· 1分 12 ·3 2 B C E DAMABE90°,DAAB △DAM≌△ABE ································································································ 9分 DMAE ·AEEP DMPE 四边形DMEP是 平行四边形. ··································································· 10分 (备注: 作平行四边形DMEP, 并计算出AM或BM的 长度, 但没有证明点M在AB边上的 扣1分) 解法②: 在AB边上存在一点M, 使四边形DMEP是 平行四边形 ························ 8分 证明: 在AB边上取一点M, 使AMBE, 连接ME、 MD、 DP. ADBA,DAMABE90° A Rt△DAM≌Rt△ABE 4 5 ······························· 9分 DMAE,14 ·1 1590° M 4590° D F P AEDM B E C AEEP DMEP 四边形DMEP为平行四边形 ······································································· 10分 (备注: 此小题若有其他的 证明方法, 只要证出判定平行四边形的 一个条件, 即可得1分) 八、 (本大题满分10分) 文档 word文档 120180································ 2分 x150xm2 ·211201802(2) 依题意: 280x150x2x······································ 4分 80 ·8226.解: (1) 横向甬道的 面积为: 整理得: x155x7500 2x15,x2150(不符合题意, 舍去) ···························································· 6分 甬道的 宽为5米. (3) 设建设花坛的 总费用为y万元. 120180y0.0280160x150x2x25.7x ······································ 7分 20.04x20.5x240 当xb0.5················································ 8分 6.25时, y的 值最小. ·2a20.04因为根据设计的 要求, 甬道的 宽不能超过6米, 当x6米时, 总费用最少. ········································································· 9分 最少费用为: 0.0460.56240238.44万元············································ 10分 2文档

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务