一、北师大小学数学解决问题五年级下册应用题
1.某公司买了8箱防疫物资,箱子的棱长是1m,要堆放在仓库里。小青设计了如下沿墙角摆放的方法:
① ② ③ ④
(1)占地面积最大的是第________种摆放方法,占地面积是________m2。 (2)露在外面的面积最少的是第几种摆放方法?露在外面的面积是多少? 2.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱? 3.同学们摘桃子,一班比二班多摘28千克,一班有52人,平均每人摘4千克,二班有50人,平均每人摘多少千克?(列方程解答)
4.实验小学五(3)班学生合买一件生日礼物送给灾区的小朋友。如果每人出8元,就多84元;如果每人出6元,就少12元。实验小学五(3)班有多少名学生?
5.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)
6.张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。如果把A桶油倒入B桶后,B桶装满,A桶还剩10升菜油;如果把B桶油倒入A桶后,A桶还要再加20升菜油才满。已知A桶容量是B桶的2.5倍。问:张华一共买了多少升菜油?
7.一个底面是正方形的长方体木块,高是10厘米,如果高减少3厘米,表面积就减少了60平方厘米,原来这个长方体木块的体积是多少?
8.如图,计算这块空心砖的表面积。(单位:厘米)
9.书架有两屠,上层的图书本数是下层的1.5倍,如果从上层拿10本书到下层, 那么两层的图书本数一样多。原来书架的上、下层各有多少本图书?
10.5个棱长都是10cm的正方体纸箱堆放在墙角处(如下图)。露在外面的面积是多少平方厘米?
11.把棱长为1cm的小正方体按如下方式摆放,请看图找规律并填表。
摆放的层数 小正方体的个数 露在外面的面的个数 露在外面的面积 1 2 3 4 5 12.李叔叔想要制作一个长20cm、宽15cm、高30cm的无盖长方体鱼缸。
(1)李叔叔至少需要买多少cm2的玻璃?
(2)为了提高观赏性,李叔叔在鱼缸里放了一块假山石,水面高度由原来的10cm上升到13cm。这块假山石头的体积是多少cm3?
13.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。
(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)
(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)
14.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米? 15.挖一个长10米,宽6米、深2米的蓄水池。 (1)这个蓄水池的占地面积是多少平方米?
(2)这个蓄水池已经蓄水1.5米,最多还能蓄水多少立方米? 16.希望小学有一间长10米、宽6米、高3.5米的长方体教室。 (1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
17.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米? 18.明明家的厨房长2.4米,宽2米,高2.6米,用瓷砖贴它的四壁,若购买边长2分米的正方形瓷砖,每块5元,一共要用多少元?
19.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
20.果园里有桃树和梨树共420棵,梨树的棵数比桃树的3倍还少20棵,果园里有桃树、梨树各多少棵?
21.光明学校四周的外围墙有些陈旧,现在要将四周的外围墙重新粉刷(不考虑门窗),现在不但要选购涂料,还要请粉刷工人。据了解:
(1)需要粉刷的外围墙(四个面)面积是多少平方米?需要多少千克涂料?
(2)既要便宜,又要耐用,你认为应该选哪种涂料,需要多少钱?
(3)选择(2)中的涂料,最后完成这项工程共计12800元,那么粉刷人工费每平方米需多少元?
22.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。
(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖? 23.有两个没有标识容积大小的杯子,如图。
(1)请你设计实验比较这两个杯子的容积大小,工具不限,写一写你的方法。 (2)奇思想知道①号杯子的容积是多少mL,他家有一个长方体的容器(足够大),刻度尺和适量水,你能帮助他利用以上工具测量一下吗?写一写你的方法。
(3)笑笑家里也有一个长方体的容器,它的长是2.2dm,宽是2dm,高是1.5dm,有一天她看到妈妈买了一些黄豆回来做饭,出于对知识的探究欲望,她想知道一颗黄豆体积大约是多少,你能帮助她设计一个实验测量一下吗?写一写你的方法。(可用工具:她家里的这个长方体容器,刻度尺和适量水)
24.教室长8m,宽7m,高3m,门窗和黑板的面积是20.8m2 , 要粉刷这间教室的四面墙壁,需粉刷多少平方米?如果每平方米需要花7元涂料费,粉刷这间教室要花费多少钱? 25.一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。他又喝了半杯,就出去玩了。乐乐一共喝了多少杯纯牛奶?多少杯水? 26.挖一个长50m、宽30m、深3m的水池。 (1)水池占地多少平方米?
(2)在水池底部和四壁抹上水泥,如果每平方米需要3.5kg水泥,至少需要多少千克水泥?
27.下图是一个长方体纸盒的展开图,计算立体图形的表面积和体积。(单位:cm)
28.一个长10cm,宽10cm的长方体容器中有一些水,水深8.5cm。小明将一块石头放入这个容器中,并完全浸没在水中,这时量得水深10cm。这块石头的体积是多少立方厘米? 29.水果店运来一批水果,其中香蕉360千克,菠萝的质量是香蕉的 ,橘子的质量比菠萝的 少15千克。水果店运来橘子多少千克?(先画线段图分析数量关系,再列式计算) 30.有两桶油,甲桶油的质量是乙桶油质量的3倍,如果从甲桶油倒24千克给乙桶,则两桶油同样重。原来甲乙两桶油各重多少千克?
31.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。 (1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
32.有一块长32cm,宽16cm的长方形铁皮,通过折、割或焊等方法做出一个高为4cm的无盖长方体盒子,使这个盒子的容积尽可能的大,你会怎样设计?请画出示意图。
(1)我的设计是:长________cm,宽________cm,高4cm。 (2)我画的示意图: (3)请列式计算出它的容积:
33.如图所示:一个长方体的水槽,被一块玻璃隔板分成左、右两部分。A部分的底面积为25平方分米,B部分的底面积为15平方分米,水槽高为4分米。左边原来装满了水,现将隔板抽出,水槽里的水有多高?
34.一个无水的长方体鱼缸,从里面量得长50厘米、宽20厘米,里面放着一个高30厘米,体积3000立方厘米的假石山。如果水管以每分钟180立方厘米的流量向鱼缸中滴水,至少需要多长时间才能将假石山完全浸没?
35.图形计算。
(1)这是一个长方体的展开图,求这个长方体的体积。
(2)每个小立方体的棱长是2厘米。求下面这个图形的表面积。
36.一个长20cm、宽15cm、高8cm的长方体木块,每次都从这个木块中锯下一个最大的正方体。锯三次后,剩下的体积是多少?
37.少年宫和学校相距800米。小童和小乐分别从少年宫和学校门口同时向相反方向走去(如下图),7分钟后两人相距1360米。小童每分钟走37米。小乐每分钟走多少米?(列方程解)
38.如图所示,一个棱长8cm,的正方体切去一个长4cm、宽4cm、高5.5cm的长方体后,在剩下的部分表面全部涂上油漆。
(1)剩下部分的体积是多少? (2)涂油漆部分的面积是多少? 39.将小正方体按下图靠墙摆放。
小正方体的个数 2 4 6 8 10 12 … 2a 露在外面的面的个数
40.一种盒装纸巾长20cm,宽10cm,高12cm。想要把2盒纸巾包装在一起,最少需要多少平方厘米包装纸?
【参】***试卷处理标记,请不要删除
一、北师大小学数学解决问题五年级下册应用题
1. (1)1;8
(2)解:①露在外面的面积:1×1×8×2+1×1=16+1=17(m²); ② 露在外面的面积:1×1×8+1×1×4+1×1×2=8+4+2=12+2=14(m²); ③露在外面的面积:1×1×4×3=4×3=12(m²);
④露在外面的面积:1×1+1×1×4+1×1×5+1×1×6=1+4+5+6=10+6=16(m²); 17>16>14>12;
答:露在外面的面积最少的是第③中摆放方法,露在外面的面积是12m²。
【解析】【解答】(1)①占地面积:1×1×8=1×8=8(m²);②占地面积:1×1×4=1×4=4(m²);③占地面积1×1×4=1×4=4(m²);④占地面积:1×1×6=1×6=6(m²);8>6>4; 占地面积最大的是第1种摆放方法,占地面积是8m²。 故答案为:1;8。
【分析】占地面积一般是指几何体的底层面积;露在外面的面积一般是指不接触底面或墙面的面积;据此解答即可。
2. (1)解:8×5.6+(5.6×3+8×3)×2-5.2 =44.8+(16.8+24)×2-5.2 =44.8+81.6-5.2 =126.4-5.2 =121.2(m²)
答:装修时至少用了121.2m²的墙纸。 (2)解:8m=80dm,5.6m=56dm 80÷8=10 56÷8=7
10×7×108=7560(元)
或 80×56÷ (8×8)×108=7560(元) 答:一共需要7560元钱。
【解析】【分析】(1) 墙纸面积=房间的四壁和房顶面积- 门窗面积,房间的四壁和房顶面积=长×宽+(宽×高+长×高)×2。(2)1米=10分米,总价=数量×单价,数量=行数×列数,行数=宽÷地砖边长,列数=长÷地砖边长。 3. 解:设平均每人摘x千克。 52×4-50x=28 208-50x=28 50x=208-28
50x=180 x=180÷50 x=3.6
答:平均每人摘3.6千克。
【解析】【分析】等量关系:一班摘的桃子重量-二班摘的桃子重量=一班比二班多摘重量,根据等量关系列方程,根据等式性质解方程。 4. 解:设这个实验班有x名学生。 8x-84=6x+12 8x=6x+12+84 8x=6x+96 8x-6x=96 2x=96 x=96÷2 x=48
答:实验小学五(3)班有48名学生。
【解析】【分析】本题有两个相等关系,学生数不变,生日礼物价钱不变,学生数设为x,根据生日礼物价钱不变列方程;
学生对的总钱数-84元=生日礼物价钱,学生对的总钱数+12元=生日礼物价钱,等量关系:学生对的总钱数-84元=学生对的总钱数+12元,根据等量关系列方程,根据等式性质解方程。
5. 解:设改进技术后,这批钢材可做x个零件。 (4.5-1.3)x=4.5×160 3.2x=720
x=720÷3.2 x=225
答: 改进技术后,这批钢材可做225个零件.
【解析】【分析】等量关系: 改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。 6. 解:设B桶能装x升油,则A桶的容量是2.5x升。 x+10=2.5x-20 x+10-x=2.5x-20-x 10=1.5x-20 1.5x-20=10 1.5x=20+10 1.5x=30 x=30÷1.5 x=20 20+10=30(升)
答:张华一共买了30升油。
【解析】【分析】本题可列方程进行解答,更好理解。设B桶能装x升油,A桶容量是B
桶的2.5倍,所以A桶的容量是2.5x升,由于把A桶油倒入B桶后,B桶装满,A桶还多10升,由此可知,共有油(x+10)升;又把B桶倒入A桶,A 桶还能再加20升才满,则油的总量是(2.5x-20)升,则此可得方程:x+10=2.5x-20,解此方程求出B桶的容量后,即能求出张华一共买了多少升油。分析本题要注意两次倒入的油的总量没有发生变化,并由此列出等量关系式是完成本题的关键。 7. 解:60÷4÷3 =15÷3 =5(厘米) 10×5×5 =50×5
=250(立方厘米)
答:原来这个长方体木块的体积是250立方厘米。
【解析】【分析】减少的表面积÷4÷减少的高=长方体的底面边长,长方体的底面边长×边长×高=长方体木块的体积。
8. 解:(40×30+30×25+40×25)×2-12×10×2+(12+10)×25×2=6760(平方厘米) 答:这块空心砖的表面积是6760平方厘米。
【解析】【分析】先计算出大长方体的表面积,然后减去两个长12厘米、宽10厘米的长方形的面积,最后加上空心部分四周的面积即可. 9. 解:设下层有x本图书,那么上层有1.5x本图书。 1.5x-10=x+10 0.5x=20 x=40 40×1.5=60(本)
答:原来书架的上层有60本图书,下层有40本图书。
【解析】【分析】本题可以用方程作答,即设下层有x本图书,那么上层有1.5x本图书,那么题中存在的等量关系是:上层有图书的本数-上下两层一样多时上层拿到下层的图书的本数=下层有图书的本数+上下两层一样多时上层拿到下层的图书的本数,据此代入数据和字母作答即可。
10. 解:观察几何体得:从上面可以看到4个正方形面,从前面可以看到3个正方形面,从右面可以看到4个正方形面,所以露在外面的面一共有:4+3+4=11(个),则露在外面的面积:10×10×11=1100(平方厘米)。 答:露在外面的面积是1100平方厘米。
【解析】【分析】先从不同的方向观察几何体,得到每个方向看到的正方形面的数量,从而求得露在外面的正方形面的数量,再根据“露在外面的面积=棱长×棱长×露在外面的正方形面的数量”,代入数据解答即可。 11. 解:
摆放的层数 小正方体的个数 1 2 1 1+1+2=4 露在外面的面的个数 1×3=3 (1+2)×3=9 露在外面的面积 3 cm2 9 cm2 3 4 5 4+1+2+3=10 10+1+2+3+4=20 20+1+2+3+4+5=35 (1+2+3)×3=18 (1+2+3+4)×3=30 (1+2+3+4+5)×3=45 18 cm2 30 cm2 45 cm2 【解析】【分析】小正方体的个数:摆一层有1个小正方体,摆二层有1+1+2个正方体,摆三层有4+1+2+3个正方体,摆四层有10+1+2+3+4个正方体,摆五层有20+1+2+3+4+5个正方体;
露在外面的面的个数:摆一层有1×3个,摆2层有(1+2)×3,摆3层有(1+2+3)×3,摆4层有(1+2+3+4)×3,摆5层有(1+2+3+4+5)×3个;
露在外面的面积=露在外面的个数×每一个小正方形的面积(小正方形的面积=棱长×棱长),计算即可。
12. (1)解:20×15+(20×30+15×30)×2 =20×15+(600+450)×2 =20×15+1050×2 =300+2100 =2400(cm2)
答: 李叔叔至少需要买2400cm2的玻璃。 (2)解:20×15×(13-10) =20×15×3 =300×3 =900(cm3)
答: 这块假山石头的体积是900cm3。
【解析】【分析】(1)此题主要考查了长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;
(2)观察图可知,假山石头的体积=长方体的底面积×上升的水位高度,据此列式解答。 13. (1)(12×10+10×8)×2 =(120+80)×2 =200×2
=400(平方厘米)
答:这张纸的面积至少是400平方厘米。 (2)12×8×(10-2) =96×8
=768(立方厘米)
答:小明吃了768立方厘米的罐头。
【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;
(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。 14. 解:120÷4×24 =30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。
【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。 【解析】【分析】等量关系:我国省级行政区总数× 方程,根据等式性质解方程。 15. (1)解:10×6=60(平方米) 答:这个蓄水池的占地面积是60平方米。 (2)解:10×6×(2-1.5) =10×6×0.5 =60×0.5 =30(立方米)
答:最多还能蓄水30立方米。
【解析】【分析】(1)根据题意可知,已知长方体的长、宽、高,求底面积,用长×宽=长方体的底面积;
(2)要求长方体的容积,用公式:长方体蓄水池内还能蓄水的容积=长×宽×还能蓄水的高度,据此列式解答。 16. (1)解:10 ×6×3.5 =60×3.5 =210(立方米)
答:这间教室的空间有210立方米。 (2)解:10×6+(10×3.5+3.5×6)×2-6 =60+(35+21)×2-6 =60+56×2-6 =60+112-6 =166(平方米)
答:这间教室要刷166平方米。
【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间; (2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。 17. 解:15×15×5÷(12×7.5) =1125÷90 =12.5(厘米)
答:石块的高是12.5厘米。
【解析】【分析】石块的高=上升的体积÷(石块的长×宽)=正方体水槽的棱长×棱长×水面上升的高度×(石块的长×宽),据此代入数值解答即可。 18. 解:(2.4×2.6+2×2.6)×2 =(6.24+5.2)×2
=6个省级行政区;根据等量关系列
=11.44×2
=22.88(平方米), 22.88÷(0.2×0.2)×5 =22.88÷0.04×5 =572×5 =2860(元)。
答:一共要用2860元。
【解析】【分析】先根据“厨房四壁的面积=(长×高+宽×高)×2”计算出厨房四壁的面积,再根据“一共要用的钱数=瓷砖的数量×每块瓷砖的价钱=厨房四壁的面积÷每块瓷砖的面积×每块砌砖的价钱=厨房四壁的面积÷(瓷砖的边长×边长)×每块砌砖的价钱”,代入数值解答即可。
19. 解: 6×5× (3-2.8) =30×0.2 = 6(dm³)
答:水面上升到3分米珊瑚石的体积是6立方分米。
【解析】【分析】珊瑚石的体积=底面积×(放入珊瑚石后水面高度-原来水深)。 20. 解:设桃树有x棵,那么梨树有(3x-20)棵。 3x-20+x=420 x=110 3x-20=3×110-20=310
答:果园里有桃树110棵,梨树310棵。
【解析】【分析】本题可以用方程作答,即设桃树有x棵,那么梨树有(3x-20)棵,题中存在的等量关系是:梨树的棵数+桃树的棵数=果园里一共有树的棵数,据此代入数据和字母作答即可。
21. (1)解:(150×2+250×2)×2=1600(平方米) 1600÷4=400(千克)
答:需要粉刷的外围墙(四个面)面积是1600平方米,需要400千克涂料。 (2)解:型号A:500÷25=20(元/千克) 型号B:450÷20=22.5(元/千克) 型号C:800÷40=20(元/千克)
型号C比型号A耐用比型号B便宜,所以选C。 需要400×20=8000(元) 答:需要8000元。
(3)解:(12800-8000)÷1600=3(元/平方米) 答:粉刷人工费每平方米需3元。
【解析】【分析】(1)长方体4个侧面的面积=(长×高+宽×高)×2,1kg涂料能够刷4平方米的面积,那1600平方米里面有多少个4平方米,就需要几千克的涂料。
(2)把A、B、C三种型号涂料的单价算出来,单价=总价÷数量,再来比较单价的大小,发现A和C两种型号的涂料单价一样,但是A型号的耐用期只有2年,C型号的耐用期有5年,要便宜又耐用,因此选C,再用数量×单价=总价,算出需要的钱。
(3)用总共花的钱-涂料费用=人工费,人工费÷粉刷的面积=每平米的人工费。 22. (1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm, 所以一共需要这样的地砖的块数=(40÷5)×(25÷5) =8×5 =40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。 (2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2 =(9.6+6)×2 =15.6×2 =31.2(平方米)
答:需要31.2平方米的瓷砖。
【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可; (2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。
23. (1)解:在①号杯子里面加满水,然后把①号杯子的水倒入②号容器,如果刚好加满,说明两个杯子容积相等;如果不能加满,说明②号杯子小于①号杯子的容积;如果加不完,说明①号杯子容积大于②号杯子容积。
(2)解:测量出长方体容器的长、宽、高分别是多少厘米。然后把①号杯子装满水,再把水倒入长方体容器中,测量出容器中水的高度,然后根据长方体体积公式计算出水的体积,就是①号杯子的容积。
(3)解:①在这个长方体容器里面倒入1dm高度的水;
②数出100粒黄豆,把这100颗黄豆倒数容器中,再测量出水面的高度; ③用长方体容器的底面积乘水面上升的高度即可求出100颗黄豆的体积; ④用100粒黄豆的体积除以100即可求出一颗黄豆的体积。
【解析】【分析】(1)容积是容器所能容纳物体的体积,可以采用倒水的方法来比较它们容积的大小;
(2)可以根据把①号杯子里面的水倒入长方体容器中,然后根据长方体体积公式计算杯子的容积;
(3)采用排水法求出100颗黄豆的体积,进而求出1颗黄豆的体积大约是多少即可。 24. 解:8×7+8×3×2+7×3×2-20.8 =56+48+42-20.8 =125.2(平方米) 125.2×7=876.4(元)
答:需粉刷125.2平方米,花费876.4元。
【解析】【分析】要求粉刷教室需要花费多少元,需要先求出粉刷的面积,即求出教室的上面、四面墙,5个面的面积去掉门窗和黑板的面积,然后再求出花费的钱数。
25. 解:纯牛奶: +× =+ =(杯) 水喝了×=(杯)
答: 乐乐一共喝了杯纯牛奶,杯水。
【解析】【分析】根据题意可知,把这杯纯牛奶的总量看作单位“1”,先喝了半杯,则喝了杯纯牛奶,剩下杯纯牛奶;然后兑满了热水,他又喝了半杯,此时喝了剩下杯纯牛奶的一半,一共喝了+×杯纯牛奶;水则喝了杯的一半,据此解答。 26. (1)解:50×30=1500(m2) 答:水池占地1500平方米。
(2)解:50×30+(50×3+30×3)×2=1980(m2) 1980×3.5=6930(kg) 答:至少需要6930千克水泥。
【解析】【分析】(1)已知长方体水池的长、宽、高,要求水池的占地面积,依据长方体的底面积=长×宽,据此列式解答;
(2) 要求在水池底部和四壁抹上水泥,就是求无盖长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;
要求需要的水泥质量,每平方米需要的水泥质量×抹水泥的面积=需要的水泥总质量,据此列式解答。
27. 解:(30-10×2)÷2=5(cm) (10×20+20×5+10×5)×2=700(cm2) 10×20×5=1000(cm3)
【解析】【分析】长方体的长是20厘米,宽是10厘米,长方体的高=(30-2×宽)÷2;(长×宽+长×高+宽×高)×2=长方体表面积;长×宽×高=长方体体积。 28. 10×10×(10-8.5) =10×10×1.5 =100×1.5 =150(立方厘米)
答: 这块石头的体积是150立方厘米。
【解析】【分析】此题主要考查了不规则物体的体积计算,长方体容器的长×宽×上升的水面高度=这块石头的体积,据此列式解答。
29. 解:如图所示:
360××-15 =270×-15 =180-15 =165(千克)
答:水果店运来橘子165千克。
【解析】【分析】根据题目信息,先画出香蕉的千克数,再将其平均分成4份,其中的3份表示菠萝的质量,菠萝中的2份表示再减去15千克即表示橘子的千克数。橘子的千克数=菠萝的千克数(香蕉的千克数×)×-15,代入数值计算即可。 30. 解:设乙桶油重x千克,则甲桶油重3x千克,根据题意得 3x-24=x+24 2x=48 x=24 24×3=72(千克)
答:甲桶油重72千克,乙桶油重24千克。
【解析】【分析】可设乙桶油重x千克,则甲桶油重3x千克,根据甲桶油-24千克=乙桶油+24千克列方程,解方程可求出乙桶油的重量,进而可计算出甲桶油的重量。 31. (1)解:50×40+(50×30+40×30)×2 =50×40+(1500+1200)×2 =50×40+2700×2 =2000+00 =7400(平方厘米)
答:做这个鱼缸至少需要玻璃7400平方厘米。 (2)解:40×1000=40000(立方厘米) 40000÷(50×40) =40000÷2000
=20(厘米)
答:水深大约20厘米。 (3)解:50×40×2.5 =2000×2.5 =5000(立方厘米)
答:放入物体的体积一共是5000立方厘米。
【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2; (2)水深就是水的高,高=容积÷底面积;
(3)求物体的体积就等于容器内水上升的体积=底面积×高。 32. (1)24;8
(2)解:
(3)解:32-2×4=24(cm) 16-2×4=8(cm) 24×8×4=768(cm3) 答:它的容积是768cm3。
【解析】【解答】解:(1)长:32-4×2=24(cm),宽:16-4×2=8(cm)
(2)
(3)24×8×4=768(cm3)
【分析】这个无盖长方体的长,是在原来长方形的两端各剪去一个4cm,长方体的宽,是在原来长方形宽的两端各剪去一个4cm,这样就相当于在原来长方形的四个角剪去了边长是4cm的小正方形,这个长方体的体积=长×宽×高。 33. 解:25×4=100(立方分米) 100÷(15+25) =100÷40 =2.5(分米)
答:水槽里的水高2.5分米。
【解析】【分析】由于前后水的体积不变,只需先求出水槽左边部分的容积,再除以这个水槽的底面积,就能求出现在水槽里水的高度,据此列式解答。 34. 解:50×20×30=30000(cm3) 30000-3000=27000(cm) 27000÷180=150(分钟)
答:至少需要150分钟才能将假石山完全浸没。
【解析】【分析】根据题意可知,先求出将假山石正好淹没,需要的水的体积,长方体容
器的长×宽×假山石的高度=将假山石淹没时水的体积,然后用将假山石淹没时水的体积-假山石的体积=需要加入的水量,最后用需要加入的水量÷水管每分钟的流量=需要放水的时间,据此列式解答。 35. (1)解:(38-4×2)÷2 =(38-8)÷2 =30÷2 =15(cm) 15×10×4 =150×4 =600(cm3)
答:这个长方体的体积是600cm3。 (2)解:(5+7+6)×2 =18×2 =36(个) 36×2×2 =72×2 =144(cm2)
答:这个图形的表面积是144cm2。
【解析】【分析】(1)观察图可知,先求出这个长方体的长,(38-高×2)÷2=长,然后用公式:长方体的体积=长×宽×高,据此列式解答;
(2)根据题意可知,先求出这个组合体露在外面的面数,然后用露在外面的面数×每个小正方体的棱长×棱长=这个图形的表面积,据此列式解答。 36. 解:第一次:8×8×8 =×8 =512(cm3) 第二次:8×8×8 =×8 =512(cm3) 第三次:7×7×7 =49×7 =343(cm3)
剩下的体积=20×15×8-512-512-343 =300×8-512-512-343 =2400-512-512-343 =1888-512-343 =1376-343 =1033(cm3)
答:剩下的体积是1033 cm3。
【解析】【分析】第一次:从长上锯一个棱长为8厘米的正方体;第二次从宽上锯一个长为8厘米的立方体;第三次宽只剩下7厘米,所以只能锯一个棱长为7的正方体,再用长
方体的体积(长×宽×高)减去三个正方体的体积(棱长×棱长×棱长),代入数值计算即可。
37. 解:设小乐每分钟走x米。 列方程,得:37×7+7x=1360-800 259+7x=560 7x=301 x=43 答:小乐每分钟走43米。
【解析】【分析】小童的速度×时间+小乐的速度×时间=两人在7分钟内一共走的距离,两人在7分钟内一共走的距离=两人相距的距离-少年宫和学校的距离,据此列出方程,解答即可。
38. (1)解:8×8×8-4×4×5.5=424(立方厘米) 答:剩下部分的体积是424立方厘米。 (2)解:8×8×6=384(平方厘米) 答:涂油漆部分的面积是384平方厘米。
【解析】【分析】(1)正方体体积=棱长×棱长×棱长,长方体体积=长×宽×高,剩下部分的体积=正方体体积-长方体体积;
(2)把挖掉部分露出的三个面向右,向前,向上平移可以知道,涂油漆部分的面积就是正方体的表面积,正方体表面积=棱长×棱长×6,据此解答。 39.小正方体的个数 露在外面的面的个数 2 7 4 10 6 13 8 16 10 19 12 22 … …… 2a 3a+4 【解析】【分析】此题主要考查了数形结合的规律,观察图可知,小正方体的个数都是2的倍数,当有2a个小正方体靠墙摆放时,露在外面的面有3a+4,据此规律解答。 40. 包装后的高:10+10=20(厘米)
包装后的表面积:(20×20+20×12+20×12)×2=880×2=1760(平方厘米) 答: 最少需要1760平方厘米包装纸 .
【解析】【分析】把最大的面叠放在一起,表面积最小,用的包装纸最少;(长×宽+长×高+宽×高)×2=长方体表面积,据此解答。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务