扬州市2019学初中毕业、升学统一考试数学试题
一、选择题(本大题共8小题,每小题3分,共24分) 1.下列图案中,是中心对称图形的是( D ) A. B. C. D. 2.下列个数中,小于-2的数是( A ) A.-5 B.-3 C.-2 D.-1 13.分式可变形为( D ) 3-x1111A. B.- C. D.- 3x3xx3x34.一组数据3、2、4、5、2,则这组数据的众数是( A) A.2 B.3 C.3.2 D.4 5.如图所示物体的左视图是( B )
6.若点P在一次函数yx4的图像上,则点P一定不在( C ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限
7.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有( D )
A.4个 B. 5个 C. 6个 D. 7个
28.若反比例函数y的图像上有两个不同的点关于y轴对称点都在一次函数
xy=-x+m的图像上,则m的取值范围是( C )
A.m>22 B.m<-22① C.m>22或m<-22 D.-22<m<22
二、填空题(本大题共10小题,每小题3分,共30分)
9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 1.79×106 . 【考点】:科学计数法 【答案】:1.79×106
10.因式分解:a3b-9ab=ab(3-x)(3+x) 。
11.扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92 .(精确到0.01)
12.一元二次方程xx2x2的根式__x1=1 x2=2___. 13.计算:
5-22018522019的结果是
52 .
15.如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=__15_。
16.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD
外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则
13MN= .
2
17.如图,将四边形ABCD绕顶点A顺时针旋转45°至AB’C’D’的位置,若AB=16cm,则图中阴影部分的面积为 32π .
18.如图,在△ABC中,AB=5,AC=4,若进行一下操作,在边BC上从左到右一次取点D1、D2、D3、D4…;过点D1作AB、AC的平行线分别交于AC、AB与点E1、F1;过点D2作AB、AC的平行线分别交于AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交于AC、AB于点E3、F3…,
则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)= 40380 .
三、解答题(本大题共有10小题,共96分)
19.(本题满分8分)计算或化简:
08-3-π-4cos45 (1)
a21(2) a11a解原式=22-1-4×
2 2a21
解原式 =
a1=-1 =a+1
21.(本题满分8分)扬州市“五个一百工程”在各校普遍开展,为了了解某
校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.
根据以上信息,请回答下列问题:
(1)表中a= 120 ,b= 0.1 ; (2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天阅读时间超过1小时的人数.
22.(本题满分8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德猜想的研究中取得了世界领先的成果.哥德猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.
(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的
概率是 1 ; 4(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中
随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
23.(本题满分10分)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。甲工程队每天整治河道多少米?
24.(本题满分10分)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10. (1)求证:∠BEC=90°; (2)求cos∠DAE.
25.(本题满分10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB。
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是弧AmB上的一点。
①求∠AQB的度数;
②若OA=18,求弧AmB的长。
26.(本题满分10分)
如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C 请依据上述定决如下问题
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= 2 ; (2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求
△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,
T(AB,AC)=2,T(BC,AB)=6,求T(BC,CD).
27.(本题满分12分)问题呈现
如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°,点M在线段AB上,且AM=a,点P沿折线AD-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x. (1)若a=12.
①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,
则x的值为____2_____;
②在运动过程中,求四边形AMQP的最大面积;
(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.
28.如图,已知等边△ABC的边长为8,点P事AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为__4____;
(2)如图2,当PB=5时,若直线l∥AC,则BB’的长度为 53 ; (3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积; (4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务