搜索
您的当前位置:首页正文

微胶囊的研究发展

来源:六九路网
1.3 微胶囊释放方式与释放机理 1.3.1 微胶囊释放方式

微胶囊芯材的释放[10-12]按扩散、膜层破裂和囊膜降解3种方式进行。①扩散通过选择合适的壁材、控制制备条件,可使胶囊膜具有渗透作用。芯材随液体(如水、体液等)的渗入而逐渐溶解,并向外扩散,直至囊膜内外的浓度达到平衡。②膜层破裂外壳因挤压、摩擦而破坏。如口香糖中的甜昧剂和香精。微胶囊的芯材可在水或其他溶剂中因壁材的溶解而释放,这是最简单的释放方法,如喷雾干燥法制造的粉末香精和粉末油脂;一也有因温度的升高致使壁材融化。③囊膜降解囊膜受热、溶剂、酶、微生物等影响而破坏,释放所包裹的物质。有意识地选择壁材和包囊方法,可使芯材在指定的pH值、温度、湿度下释放,如利用高分子材料的溶解性随体内各部位pH值不同而改变的特点,使壁材在指定部位溶解而释放出包裹的物质。聚乙烯基吡啶类在酸性条件下溶解,属于胃溶性高分子聚合物,而苯乙烯一马来酸酐在碱性条件下溶解,是肠溶性高分子聚合物,选用不同的壁材可改善包裹物对胃肠道的不良刺激。

1.3.2 微胶囊的释放机理

通过膜的作用来控制释放的系统,其扩散速度遵循费克扩散定律:dM/dt=(A/h)X D (Cs-K X C。)(1)式中:dM/dt,是单位时间囊心的释放量,g/s;A是膜的表面积,cm2;h是扩散厚度,cm;D是聚合物中抑制剂的扩散系数,cm2/s;C。是抑制剂在膜中的饱和溶解度,g/cm3,;K是抑制剂在聚合物和环绕装置的过滤介质之间的分散系数;C。是释放到环境中的抑制剂含量,g/cm3。溶解度和分散系数可通过热力学方法得到,抑制剂分子运动(由扩散常数表示)是一个由尺寸、形状、抑制剂极性和扩散介质形态所决定的动力学参数。因此,如果抑制剂被一层惰性膜包围,且在胶囊中含量保持恒定,释放过程就符合零级动力学过程,即释放速度为常数。如果是球形胶囊,方程(1)就可推导为:dM∕dt=4π r0 ri(Cs-Ce K)(r0-ri) (2)式中:r0表示微胶囊的半径,cm;ri表示微胶囊核心的半径,cm。

1.4 温度感应型控制释放微胶囊的研究进展 1.4.1 表面接枝PNIPAM型感温性微胶囊

Okahata等于20世纪80年代中期报道了一种在表面接枝聚异丙基丙烯酰胺(PNIPAM)的温度感应型微胶囊。结果发现氯化钠和染料分子透过微胶囊的透过系数在环境温度不高于PNIPAM相转移温度时较低,而在环境温度高于PNIPAM相转移温度时较高。这是由于表面接枝的PNIPAM在温度T>LCST(低临界溶解温度,即相转移温度,PNIPAM约为32摄氏度)时呈现收缩并变得疏水;而在温度T<LCTS时则呈现膨胀而且亲水状态。由于溶质分子在膨胀且亲水的表层中的扩散要比在收缩且疏水表层中快得多,从而达到温度感应控制释放的目的。

1988年Kidchob等将PNIPAM接枝在多肽微胶囊表面,并研究了FITC型葡萄糖从其中释放速度的温度感应特性。结果表明,随环境温度变化而跨越过PNIPAM的LCST时,FITC型葡萄糖的释放速度会在较窄的温度范围内显示出突然变化,亦说明表面接枝的PNIPAM表明有效的起到了温度感应控制阀的作用。

1.4.2 膜层中含有PNIPAM凝胶颗粒的感温型微胶囊

2000年Ichikawa和Fukumori研制出了一种在膜层中含有亚微米级或纳米级PNIPAM凝胶颗粒的感温型微胶囊。由于膜层中的PNIPAM凝胶颗粒会随温度变化而产生收缩-膨胀现象(即在T<LCST时会膨胀,而在T>LCST时收缩),于是在环境温度T>LCST时膜层内会因PNIPAM颗粒的收缩而形成很多空穴,这时药物分子透过膜层的扩散阻力较小、释放速度较快;而在T<LCST时由于PNIPAM颗粒膨胀而使膜层中空穴被填满,于是对药物分子透过膜层的扩散阻力变大,从而使释放速度下降,磺化咔唑铬钠(CCSS)从具有上述结构的微胶囊中释放速度的温度感应特性结果表明,当温度为30摄氏度时CCSS释放速度特别低,而当环境温度为50摄氏度时其释放速度则突然变得很大,较好地实现了“开—关”式环境温度感应型控制释放。

1.4.3 膜孔接枝PNIPAM“开关”的温度感应型微胶囊

褚良银等在2001年提出了一种在膜孔接枝PNIPAM“开关”的温度感应型控制释放微胶囊。孔膜内PNIPAM接枝量在较低的情况下,主要利用膜孔内PNIPAM接枝链的膨胀—收缩特性来实现感温性控制释放:当环境温度<LCST时,PNIPAM链变为收缩状态而使膜孔“开启”,为微胶囊内溶质分子的释放敞开通道,于是释放速度变快。在膜孔内PNIPAM接枝量很高的情况下,膜孔即使

在环境温度T>LCST时也呈现不了“开启”状态,这时主要依靠PNIPAM的亲水-疏水特性来实现感温性控制释放。当环境温度T<LCST时,膜孔内PNIPAM呈亲水状态;而当环境温度T>LCST时,膜孔内PNIPAM变为疏水状态。由于溶质分子在亲水性膜中更容易找到扩散“通道”,所以在环境温度T<LCST时的释放速度比在T>LCST时要高些。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top