搜索
您的当前位置:首页正文

第十七章 勾股定理知识点与常见题型总结

来源:六九路网


勾股定理

一、知识归纳 1、勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2 2、勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3、勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC中,C90,则ca2b2,bc2a2,ac2b2 ②知道直角三角形一边,可得另外两边之间的数量关系 4、勾股定理的逆定理

如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边。勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2b2c2,时,以a,b,c为三边的三角形是钝角三角形;若a2b2c2,时,以a,b,c为三边的三角形是锐角三角形; 二、题型

题型一:直接考查勾股定理

例1.在ABC中,C90⑴已知AC6,BC8.求AB的长 ⑵已知AB17,AC15,求BC的长 分析:直接应用勾股定理a2b2c2 解:

题型二:应用勾股定理建立方程

例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD= ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为

分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:

例3.如图ABC中,C90,12,CD1.5,BD2.5,求AC的长

ACD12ECEDCABABB

例4.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积

题型三:实际问题中应用勾股定理

例5.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形

例6.已知三角形的三边长为a,b,c,判定ABC是否为Rt ①a1.5,b2,c2.5 ②a52,b1,c 43解:

例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状? 解

题型五:勾股定理与勾股定理的逆定理综合应用

例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC

证明:

ABDC一、想好了再填

1.已知一个Rt△的两边长分别为3和4,则第三边长是

2.如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的母线L是________

3.直角三角形两直角边长分别为5 和12,则斜边上的高为________.

4. 已知等腰三角形的腰长是6cm,底边长是8cm,那么这个等腰三角形的面积是 .

5.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是10,B的面积是11,C的面积是13,则D的面积之为_______. 6.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD= 6 km,且D位于C的北偏东30°方向上,则AB=______km. (第2题)

C B 6 8 l D BD北东A 8cm AC第第6题 13题7. 如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行___________米.

12

3 4

第9题

8.如图,直线 L过正方形 ABCD 的顶点 B , 点A、C 到直线 L 的距离分别是 1 和 2 , 则正方形的ABCD的面积是 .

9. 如图是一个长方体长4、宽3、高12,则图中阴影部分的三角形的周长为__________。

10.某校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,BCA90,台阶的高BC为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m,取21.414,31.732)

B A1 B1 P 第

11

IJGFHDECB30 A (第10题图)

Q

题图

C A

B

A

11.有一圆柱体高为10cm,底面圆的半径为4cm,AA1、BB1为相对的两条母线。在AA1上有一个蜘蛛Q,QA=3cm;

在BB1上有一只苍蝇P,PB1=2cm。蜘蛛沿圆柱体侧面爬到P点吃苍蝇,最短的路径是 cm。(结果用带π和根号的式子表示)

12.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方

形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为

S2,S3,…,Sn(n为正整数),那么第8个正方形的面积S8 =_______________

二、看准了再选

13.“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是5”,这种利用图形直观说明问题的方式体现的数学思想方法叫( )

A.代入法 B.换元法 C.数形结合的思想方法 D.分类讨论的思想方法

521P32cm 24cm 第17题

1O14.下列几组数中不能作为直角三角形三边长度的是

( ) 25A.a7,b24,c25 B.a1.5,b2,c2.5 C.a,b2,c D.a15,b8,c17

3415.两只小鼹鼠在地下打洞,一只朝正东方挖,每分钟挖8cm,另一只朝正南方挖,每分钟挖6cm,10分

钟之后两只小鼹鼠相距( )

A. 50cm B. 100cm C. 140cm D. 80cm

16.如图一个圆桶儿,底面直径为24cm,高为32cm,则桶内能容下的最长的木棒为( )

A. 20cm B. 50cm C. 40cm D. 45cm

2222

17.若等边△ABC的边长为4cm,那么△ABC的面积为( ).A.23cm B.43cm C.63cm D.8cm

18.如图(2),在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,•OC=B则点C关于

y轴对称的点的坐标是( ) A.(3,3) B.(-3,3) C.(-3,-3) D.(32,32) 19.如图所示:数轴上点A所表示的数为a,则a的值是( )

A.5+1 B.-5+1 C.5-1 D.5 20.直角三角形的周长为24,斜边长为10,则其面积为( ).

A.96 B.49 C.24 D.48

21.老李家有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( )

2222y A.24米. B.36米. C.48米. D.72米. A1 B C 1 x -2-101A23O A -3第23题

22.在一块平地上,李大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的李大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到李大爷的房子吗?请你通过计算、分析后给出正确的回答.( )

A.一定不会 B.可能会 C.一定会 D.以上答案都不对 23.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=3,AB=1,则点A1的

坐标是( )。

AB = 3.00 cmCA = 4.11 cm3333313

BC = 5.08 cm,) B、(,3) C、(,) D、A、((,)

2222222 AD = 2.03 cm三、想好了再规范的写

24、已知:在四边形ABCD中,AB=3cm, BC=5cm,CD=2 DC = 3.52 cmDA3,AD=2cm,AC⊥AB

求四边形ABCD的面积

BC

25、某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

因篇幅问题不能全部显示,请点此查看更多更全内容

Top