ShyhtsunF.Wu
GailE.Kaiser
ColumbiaUniversity
DepartmentofComputerScience
500W.120thStreetNewYork,NY10027
Tel:212-939-7086,Fax:212-666-0140
wu,kaiser@cs.columbia.edu
February15,1994
c1993,ShyhtsunFelixWuandGailE.Kaiser
AllRightsReserved
Abstract
In[WK94],wedefineareal-timeproducers/consumersproblemwherealltasksareperiodicandallresourcesarenon-sharable/non-reusable.Inthispaper,westudythesameproblembutwithsharableresources.Wedefineaquantitativemeasure,resourcefreshnessratio(RFR),torepresenttheeffectofsharableversusnon-sharableresourcesonimprovingtheresourcefreshnesswhentasksstartsimultaneously.WeconsidertheRFRvaluesforbothaveragecasefreshness(ACF)andworstcase
andrespectively.Thefollowingresultsareobtained:freshness(WCF),i.e.,
1.
resourcetype
,0
10
1.
andvalueswhen2.Givenasetofconsumersandaresourcetype,thenthe
wehaveonlyonefast-producertoserveallthe-consumersaresmallerthanthevalueswhenwehavemultiple-producersandallthese-producershaveshortercycletimesthananyofthe-consumers.
3.
and
timethananyofthe-consumertasks,whereBothboundsaretight.
2
3
ifall-producertaskshaveshortercycleistheamountofconsumedinonehyper-cycle.
2
Wealsoexplainwhytheseresultsareusefulinthedomainofreal-timenetworkmonitoring,control,andmanagement.
1
1Introduction
Inanetworkmanagementsystem,managementinformationistreatedasreal-timeresources[WK93].Ifthemanagementinformationstoredinamanagementworkstationisconsistentwithwhatishap-peninginthereal-world,thenallthemanagementapplicationsusingthisinformationcanmakevalidmanagementdecisionsandactions.Therefore,itiscriticallyimportanttoguaranteethat,forexample,iftheoperationalstatusofthereal-worldnetworksystembecomesattime,thenbeforetheinformationusedbymanagementapplicationsshouldreflectthisnewstateofthenetwork.Wecallthefreshnessofthemanagementinformation.
Themanagementapplicationsarethereal-timeinformationconsumers,whilemanagementagentsaretheinformationproducers.Oneresponsibilityofamanagementagentistodetectnetworkfaultsandtosendnotificationeventstooneormoremanagementapplications.Afterreceivingafaultno-tificationevent,themanagementapplicationwouldhandlepotentialnetworkfailuresrelatedtothisfault.Sincesomeuserapplicationsonthenetworkmightbetime-sensitive,thepotentialfailuresmustberesolvedinrealtime.However,amanagementapplicationmightnotbeabletoidentifytheproblembyjustinglookingatonenotificationevent.Moreoften,aglobalconsistentviewofthewholenetworkisnecessaryforthemanagementapplicationtomakeadecision.Therefore,weneedahardreal-timemanagementinformationbasetorepresentthestateofournetwork.Anarchitectureofareal-timenetworkmanagementsystemisdepictedinFigure1.
Weproposedareal-timeproducers/consumersmodel,DONUT,in[WK94,WK93]asanabstractmodelwherewedeveloptechniquesfortheproblemsofmaintaininghardreal-timemanagementinfor-mation.In[WK94],weconsiderbothavailabilityandfreshnessoftheconsumedinformationresourceunderthecasewheretheyarenon-sharable/non-reusable.Weshowthatbothworstcasefreshness(WCF)andaveragecasefreshness(ACF)canbeoptimizedsimultaneously.Thenon-sharablecaseisusefulinadistributedmanagementsystemwhereonemanagementapplicationcannotaccessthemanagementinformationofothers.However,asinFigure1,ifmorethanonemanagementapplica-tionsareloadedonthesamemachine,thentheinformationmightbecomesharable.
Inthispaper,weanalyzethepowerofthesharableresourcesinthereal-timeproducers/consumersproblemforbothACFandWCFcases.Wedefineaquantitativemeasure,resourcefreshnessratio(RFR),torepresenttheeffectofsharableversusnon-sharableresourceswhengivenasetofperiodic
couldbeproducerandconsumertasksstartingatthesametime.Intheworstcase,weshowthat
0,whichimpliesthatsharableresourcesareinfinitelybetterthannon-sharableones.However,ifwelimitourselvestothesetoftaskswhere,resourcetype,the-producertasksalwayshaveshorter
2
cycletimesthananyofthe-consumers1,thenwecanprovethat.2Also,givenasetofconsumers,thentheRFRvaluewhenwehaveonlyonefast-producertoserveallthe-consumersissmallerthanthevalueswhenwehavemultipleslow-producersandallthese-producertaskshaveshortercycletimesthananyoftheconsumers.Furthermore,wediscoverthat
andoneproducerwithcycletime
weusetherate-monotonicschedulingalgorithm[LL73],thisimpliesthat
-consumertasks.
1If
-producertaskshavehigherprioritiesthan
2
ManagementApplicationsReal−Time MIBReal−TimeMonitoringSystemInformationAgentInformationAgentInformationAgentWorstCase:
GlobalResourceBalanceConditionShorterCycleTimeProducerTasksOneProducer,ArbitraryConsumersOneProducer,IdenticalConsumers
0
22
33
1
11
11
22
2
Figure2:ClassesofProducer/ConsumerTaskSetsandthe
Values
3
non-sharableinformationresourcesneedtobeconsideredinordertoanalyzethepreciseinformationfreshness.However,wecanassumeeithereverythingornothingissharablewhileperformingtheanalysis.Theoutcomeofthatanalysiswouldbeclosetotherealfreshnesswithaboundederror.Third,inthesystemdesignphase,ourresultsprovideinformationfordecidinghowmanyproducertasksweshouldhave.WewillelaboratemoreonthesethreeissuesinSection4.
Inthenextsection,webrieflyintroducetheDONUTmodelandtheproblemsofworstcasefreshnessandaveragecasefreshness.Then,weformallydefinetheconceptofresourcefreshnessratio(RFR).Finally,wegivetheresultsof.
2TheDONUTProblem
2.1PeriodicTasksandTaskOccurrences
Definition1(ResourceVector,
1
2
)Iftherearedistincttypesofresources,thenaresourcevector
isan-tuplebitvector,where01for1.
Definition2(PeriodicTask,)Aperiodictaskischaracterizedbythefollowing6attributes:
1
:thestartingtimeof’sfirstoccurrence.:thecyclelengthof.:thepriorityof.
:theworstcaseexecutiontimeof.:anfortheresourcesproducedby.:anfortheresourcesconsumedby.
,areallintegers.Pleasenotethatthetimethatwearedealingwithisdiscrete,and1,,
Definition3(-thoccurrenceofPeriodicTask,)
isthe-thoccurrenceoftheindexofthesequence,then
1
1
hasasequenceofoccurrences.If.Furthermore,thestartingtimeof
is,
Example1Weliveinaworldwheredonutsaretheonlyfoodwecaneat.Infigure3,therearethreedifferenttypesofdonuts:GLAZED,FROSTED,andJELLY-FILLED.And,wehavefourperiodictasks:
,,,and.willmakeoneGLAZEDdonutandoneFROSTEDdonutevery2hours.BothandareperiodicconsumersofbothGLAZEDandFROSTEDdonutsandthecycletimeis4hoursforbothofthem.Also,bothandwouldproduceoneJELLY-FILLEDdonutineach
isstilltoosmalltomakeanydonutsbutheneedstoeatoneJELLY-FILLEDtaskoccurrence.Finally,
donutevery2hours.
Sincewehaveonlythreedifferenttypesofresource,allthe’sare3-tuplebitvectors123byDefinition1.Ifweassumethatalltasksstartattime0,thenwecanspecifythesefourtasksasthefollowing:
:
1
0,
2hours,
,
,
110,
000.
::
1
0,
6hours,
,
,
001,
110.
1
0,
3hours,
,
,
001,
110.
:
1
0,
2hours,
,
,
000,
001.
4
FrostedJelly−FilledMommy2 hrsGlazedGrandmaFrostedAuntieJelly−FilledSon2 hrs5
2.3ResourceBalanceCondition
Definition4(TypeResourceBalanceCondition)Asetoftasks,resourcebalancedifandonlyif
1
2
,istype
6
tljtkit(l+1)jJkiJljthe Producerthe ConsumerGiven a pair of producer and consumer task occurrences,this is the inherent blocking region that priority inheritanceschemes can not help.Figure5:TheCasewhentheConsumerStartsEarlierthantheProducer
2.5TheResourceFreshnessProblem
Given
,wewouldliketoknowthelifetimeofthisconsumedtype
resource.Theexactlifetimeis
difficulttoknowuntilruntime.However,bythepropertiesdescribedinSection2.1,aresourcewould
(i.e.,)anditwouldbeconsumedbeforethestartingnotbeproduceduntilthestartingtimeof1
timeofthenextoccurrenceof(i.e.,).Therefore,wecanusethesetwoboundstoapproximatetheexactlifetimeofaresource.Inthefollowingdefinition,theconceptofresourcefreshnessfornon-sharable/non-reusableresourcesisdefined:
Definition8(Non-SharableResourceFreshness,
)
1
1
1
1
1
1
1
(byDefinition3)
1
1
1
1
whereisthestartingtimeofof,ataskoccurrenceoftype
,ataskoccurrenceoftyperesourceconsumer.
resourceproducer,and
isthedeadline
InDefinition8,weobservetwothings:
1.If,then0.Thisiscertainlyundesirablebecausetheconsumertaskoccurrence,,woulddefinitelymissitsdeadlinewhilewaitingfortheresourceproducedby.
1
2.Whenvalueof
,
isblockeduntil,regardlessofthevaluesofand.Thelargerthe,theharderitistoschedulethesetoftasks.ThissituationisdepictedinFigure5.
Wedonotclaimthatitisimpossibletoscheduleasetoftaskswhenweallowaconsumertaskoccurrencetostartearlierthanitscorrespondingproducertaskoccurrence.However,inordertoreducetheproblem’scomplexity,wemakethefollowingrestrictionfortheresourceallocationpolicies.Policy1(ARestrictiononResourceAllocationPolicies)Givenanyresourceallocationpolicy
1under,thenmuststartnolaterthan(i.e.,).if
,
Inordertoevaluatetheperformanceofresourceallocationpolicies,twoquantitativemeasuresare
defined.Givenaresourcetype,theworstcasefreshness()isthelargestvaluethatcouldeverhappen.Sinceweonlyconsiderperiodictasks,itissufficienttofindthelargestvalue
)istheaverageoveralltheinonehyper-cycle.Similarly,theaveragecasefreshness(
valuesfortheconsumedresources,andwecancomputethefromallthevaluesinonehyper-cycle.
7
Definition9(WorstCaseFreshness,
)
1
max
1
1
0
0
where
0
1
1
,and
1
10
ifisTRUE,otherwise
Definition10(AverageCaseFreshness,
)
1
1
1
0
0
where011
,and
istheamountof
thatanoccurrenceoftask
consume.Inotherwords,
2
10
would
8
MommyGlazedNon−SharableDonutAuntieFreshness = 4 hoursGrandmaFreshness = 6 hours6:008:0012:00Figure6:TheTimeDiagramoftheNon-SharableDonutExample
3SharableResourceFreshness
Whenresourcesaresharable,thenthevaluesarelargerthantheactualRFvalues.BytheRestrictionPolicy(Policy1inSection2.5),weknowthataconsumercanconsumeanyresourceproducedbyataskoccurrencestartingearlierthanthisconsumer.Therefore,withsharableresources,thisconsumershouldconsumetheresourcefromthelatestproducerthatwouldobeyPolicy1.
Example3(SharableDONUT)InExample2,ifwemaketheGLAZEDdonutssharableresources,
andcanhavethenboth2,thelatestproducedGLAZEDdonut.Inthiscase,thedonut
freshnessisdifferent:
22
byby
:12:12
88
4hours.4hours.
And,
44
5,
whiletheWCFratiois
4
3.
The
timediagramisillustratedinFigure7.
Definition11(SharableResourceFreshness,
)
1
1
1
3.1ResourceFreshnessRatio
Sinceweareinterestedincomparingthepowerofsharableversusnon-sharable,wedefineaquantitative
measure,resourcefreshnessratio(RFR),torepresenttheresultofthecomparison.
9
MommyGlazedSharableDonutAuntieFreshness = 4 hoursGrandma6:008:0012:00Figure7:TheTimeDiagramoftheSharableDonutExample
Definition12(ResourceFreshnessRatiofor())Weconsidertheconsumed’sinonehyper-cycle,andtheresourcefreshnessratio
ofallthe
1
max
1
3.2TightUpperandLowerBoundsfor
Since
and
,byDefinitions12and13,thevaluesofbothand
arebetween0and1.Itiseasytoseethat1istruewhenwehave
onlyone-producertaskandone-consumertaskand.Inthisspecialcase,sharableresourcescannotimprovetheresourcefreshnessatall.
andislessobvious.InthefollowingTocheckwhether0isatightlowerboundfor
example,weshowthatevenwhentheglobalresourcebalanceconditionholdsthevalueofcouldconvergetozerowhenthehyper-cycle.
Theorem1(TightLowerBoundforzerowhen
and
)
and
couldgoto
proof:
Assumeeverytaskoccurrencewouldeitherproduceorconsumeoneunitofresourcethehyper-cycle2,forsome.Wehavetwo-consumertasks1,2,and
and
1
10
-producertasks01Thecycletimesofbothconsumertasksaswellasthefirstproducertask0is2,i.e.,12.Thecycletimesofallotherproducertasks20
.Also,thefirsttaskoccurrencesforallthetasksstartattime0simultaneously,is2
1111
i.e.,110Thus,theglobalresourcebalanceconditionholds201
becauseinonehyper-cycle2resourcesareproducedandconsumed.
Ifissharable,both1and2canusetheresourcesproducedby0.Therefore,theresourcefreshness2.Sincewehave2resources,thenumeratoroftheinDefinition12is224.And,thenumeratoroftheinDefinition13ismax2222.
isnon-sharable,1ismatchedto0,and2needsConsideringtheACFcasewhen
Since12,eachofthesetaskswouldresourcesfrom12
produceonlyoneunitofresourceinonehyper-cycle.Thefirsttaskoccurrenceof2,12,
1121
2.Then,wecanseethat4,ismatchedto11,and2122
1
andingeneral,2,where1.Thus,thedenominatorofthe2
2
isequalto122123asinFigure8.Finally,
4
3
and
0as
.
ConsideringtheWCFcasewhen
theisequalto
isnon-sharable,wecanshowthatthedenominatorof
2
,only
finished,i.e.,both1and2contribute
oneresourceproducedattime0mustnotbeconsumeduntil
1.InFigure9,wepresentawaytoallocateresourcestoexactly2
meetthelowerbound.Similarly,wecanderivethesameboundforthecasewhenisodd.Thus,
212
consumerjobsare
2.Thisimpliesthat
and
0as
.
3.3SingleProducerModel
andcangotozero,thevaluescanbeByTheorem1,sincethevaluesof
muchsmallerwhenissharable.However,ifwerestrictthenumberof-producertaskstobe1,then
2
2whentheglobalresourcebalanceconditionholds.Forexample,
4
istheonlyproducerofdonut,andtherefore,asinExample3,3and
2
.2
Beforeprovingthemaintheorems,weneedtoprovethefollowinglemma:
Lemma1(MonotonicSequenceBoundingLemma)Given
,12
1
positiveintegers,
1
1
2
,where
1
11
Producersτττττp0p1p2pnConsumersc1τc2nFigure8:ResourceAllocationwhen
2
3
.
Producersτττττp0p1p2pnConsumersc1τc2nFigure9:ResourceAllocationwhen
12
Lemma2(MaximumCycleTimeBoundingLemma)Letbethenumberoftyperesourcescon-sumedinonehyper-cycle,andtheresourcebalanceconditionholds.Givenone-producertaskand-consumertasks,12,where1,then,2
2
3
where
1
3
isthenumberofconsumertasks,and
istheamountofresourcesconsumedinonehyper-cycle.
proof:AppendixA.3.
Theorem3(inSingleProducerModel)Assumealltasksstartatthesametime.Ifonlyoneproducertaskisallowedandwearegivenanarbitrarysetofconsumertasks,then,whentheglobalresourcebalanceconditionholds,
2
where
istheamountof
resourcesconsumedinonehyper-cycle.
proof:AppendixA.4.
3.4SingleProducerversusMultipleShorterCycleTimeProducers
Givenanarbitrarysetofconsumertasks,wehaveshowninTheorems2and3thatifwehaveonlyone
2
-producertoserveallthe-consumers,then2.Withthesamesetofconsumers,however,thevaluesarealwayslargerifwereplacetheonly-producerwithseveralslower-producers.Anyofthenew-producersshouldstillhaveashortercycletimethananyofthe-consumers.
Example4InExample1,ifwereplacetheonlyGLAZEDdonutproducertwoslowerproducers:
(
2hours)with
with
4hours,and
with
4hours.
1
Wehaveadifferenthypercyclegraph(Figure10).
Now,MommyisonvacationandweletDaddymakeGLAZEDdonutsforGrandma(11
)andUnclemakeGLAZEDdonutsforAuntie(1).Then,
4hours.Sinceinthiscase,thenumeratorsofbothand
4
remainthesame,4hours,wehave
2
5and
13
4 hrs4 hrs4 hrs4 hrs2 hrsDaddyUncleGrandmaAuntieSonOne Hyper CycleAnother Hyper CycleGlazedFigure10:Hyper-Cycleswith
and
Resource FreshnessNot CrossingProducerssJpJkiJljJtqCrossingConsumersstptktljittqResource FreshnessFigure11:RemovingtheCrossRelations
3.4.1CrossResourceDependencyRelations
Definition14(CrossResourceDependencyRelations)Tworesourcedependencyrelations,
and,arecrossingeachotherif.
Lemma3(RemovingCrossRelations[WK94])Givenasolutionofaresourceallocationpolicywithsomecrossresourcedependencyrelations,wecanremovethecrossrelationswithoutincreasingthesummationofresourcefreshnessinonehyper-cycle.(Figure11)proof:In[WK94].
3.4.2MultipleShorterCycleTimeProducers
Wewouldliketoreplacetheonly-producerbyseverallongercycle-producers,andthenewsetofproducersshouldtaketheresponsibilitytofulfilltheresourcerequirementsforallthe-consumers.First,weobservethatthenumeratorsofbothand(i.e.,and1
max
1
respectively)cannotbebetterbecausehavingoneshortestproduceristhecase
wheresharableresourcescanhavethebesteffect.Then,inordertoshowthathavingmultiple-and,wecanonlyconsiderthedenominatorpartsofproducersisbetterforboth
Definitions12and13.Inotherwords,wewanttoprovethat,forevery,wecouldfindaninthenewsetofproducertaskssuchthat
14
Lemma4(ResourceCounting)Givenasetoftasks(one-producerandmultiple-consumers)wheretheglobalresourcebalanceconditionholdsandalltasksstartattime0.Ifwestartcountingattime1,thenatanymoment,thenumberofproducedresourcesmustbegreaterthanorequaltothenumberofconsumedresources.
proof:AppendixA.5.
Lemma5(ShorterCycleTimeProducers)Thedenominatorpartsof
,
1
and
,
max
1
aresmallerwhenwereplacetheonly-producerwithmultiple-producertasks.And,everynewproducertaskshouldhaveashortercycletimethananyofthe-consumertasksandtheglobalresourcebalanceconditionholds.
proof:AppendixA.6.
Theorem4(TheBoundsforshortercycletimesthananyofthe
2
)2ifall-producertaskshave-consumertasksandtheglobalresourcebalanceconditionholds.
proof:FromTheorem2,Theorem3andLemma5.
3.5SpecialCase:1
Producer/ConsumersModel
Givenaresourcetype,ifproducertaskshaveshortercycletimes,22arethelowerboundsfor
and,respectively.Weshowthatthesetwoboundsareactuallytightbyprovidinga
specialcasethatwouldexactlymeetthebounds.
Definition15(SingleProducerwithIdenticalConsumers,)Inareal-timesystem,thereare
uniformconsumertasksforthetyperesources,andbecauseoftheresourceoneproducertaskand
balanceproperty,alltheconsumershavecycletimeofunits,whiletheproducer’scycletimeisoneunit(seeFigure12).Intheamountoftyperesourcesproducedinonehyper-cycleisequalto,thenumberof-consumertasks.
Lemma6(ResourceFreshnessRatioinACF(
)for
)Inthe
model,
2
3
3
boundistightbecausewhen
,theratio
2
.
Lemma7(ResourceFreshnessRatioinWCF(
)for
)Inthe
model,
15
ProducerRF = 5Consumer 1RF = 5RF = 6Consumer 2RF = 5RF = 7Consumer 3RF = 5RF = 8Consumer 4RF = 5RF = 9Consumer 5Sharable ResourcesNon−Sharable Resources5 + 6 + 7 + 8 + 9 = 355 + 5 + 5 + 5 + 5 = 2525=355957Resource Freshness Ratio(Average Case)(Worst Case)Figure12:AnExampleofaSingleProducerwith
UniformConsumers
5
proof:intheAppendixA.8.
SimilarlyfortheWCFcase,byTheorem3andLemma7,theoneproducerwithconsumersmodel,,isthemodelwheresharableresourcescanhavethebestimprovementovernon-sharableresources.Furthermore,byLemma7,weknowthe121goesto1
isthetightlowerboundfortheratiobetweensharableandnon-sharableresources
consideringaveragecasefreshness,while1
3
3
and
1
16
oftheapproximation.
Anotherinterestingquestionforasystemdesigneris,givenasetofinformationconsumers,howmanyproducertasksshouldbeprovided.Lemma5tellsusthatmoreproducerswouldachievebetterfreshnesswhenresourcesarenon-sharable.Ontheotherhand,havingmorehardreal-timetasksimpliesthatweneedmorephysicalmemoryinahardreal-timeoperatingsystem(e.g.,[FGG91]).Thusthereisatrade-offbetweenmemoryconsumptionandresourcefreshness.However,byLemma5andTheorem4,replacingasmallnumberoffastproducerswithalargenumberofslowproducerscouldonlyimprovethefreshnessbyafactorof2inatthemost.2
5OpenProblems
1.Foralltheresultsinthispaper,weassumethattheglobalresourcebalancecondition(GRBC)
problemwithnon-sharable/non-holds.GRBCisanecessaryconditionforsolvingthereusableresourcesbutisnotfortheproblemwithsharableresources.Canwecompare
andwhenGRBCisnotenforced?
2.Mostoftheresultsrequireauniformtaskstartingtime.Itisobviousthat,dependingonphase
differencesandthetaskset,theresourcefreshnessratiocouldbeeitherlargerorsmaller.Canwerelaxthisassumption?3.Ifweallow“aperiodic”producersandconsumers,whatkindof
valuescanweguarantee?
Wearecurrentlyworkingonthethirdproblem,whichisaveryimportantfornetworkmanagement.AsshowninFigure1,therearetwodifferenttypesofreal-timeinformationresources:
real-timemanagementinformationbase(polling);asynchronouseventnotification(eventreporting).
Wehavetousetheaperiodicproducers/consumersmodeltodealwiththereal-timeasynchronouseventhandling.Thefreshnessofaneventmeansthat
Ifanevent(donut)foradetectedfaultisgenerated(produced),thenthiseventmustbehandled(consumed)byatleastonemanagementapplicationwithinacertaintimeperiod(freshness)toresolvepotentialnetworkfailuresrelatedtothefault.
17
Acknowledgments
KevinJeffayprovidedmanyvaluablesuggestions.DiscussionswithStephenBrady,AurelLazar,andSubrataMazumdarwerehelpfulinunderstandingthereal-timeproblemsinthedomainofnetworkcontrolandmanagement.
References
[FGG91]BorkoFurht,DanGrostick,DavidGluch,GuyRabbat,JohnParker,andMegMcRoberts.
[LL73]
[LM80]
[WK93]
[WK94]
Real-TimeUNIXSystems:DesignandApplicationGuide.KluwerAcademicPublishers,1991.
C.L.LiuandJamesW.Layland.Schedulingalgorithmsformultiprogramminginahard-real-timeenvironment.JournaloftheACM,20(1):46–61,January1973.
JosephY.T.LeungandM.L.Merrill.ANoteonPreemptiveSchedulingofPeriodic,Real-TimeTasks.InformationProcessingLetters,11(3):115–118,November1980.
ShyhtsunF.WuandGailE.Kaiser.OnHardReal-TimeManagementInformation.InIEEEFirstInternationalWorkshoponSystemManagement,pages90–100,LosAngeles,CA,April1993.
ShyhtsunF.WuandGailE.Kaiser.Non-SharableResourceFreshnessinReal-TimeSchedul-ing.InRealTimeSystemsConference(RTS’94),pages51–66,PorteMaillot,Paris,January1994.
18
AProofs
.
A.1Lemma1
Assume
iseven,
1
1
2
1
1
1
1
1
2
2
2
21
1
2
1
1
2
2
2
12
12
1
1
2
1
1
2
andtheresultisthesame.
A.2Lemma2
Letuscompute:
1
(ResourceBalanceCondition)
Dividing
frombothsides,weget
inthesingleproducermodel,
.
A.3Theorem2
Assumewehaveconsumertaskswherecouldbearbitrarilylarge.Wethencansortthecycletimeoftheseconsumertasksinanondecreasingorder:1.Inonehyper-cycle,task1has2
19
1
1
.Becauseofthebalancecondition,
1
1
and,
1
1
Thisalsoimpliesthat0.
Withsharableresources,thefreshnessofconsumedresourcesisthecycletimeoftheconsumertasks.Thereasonisthatwhenaconsumertaskstartsanewoccurrencetheremustbeaproducer
0andalltasksstartsimultaneously.)occurrencestartingatthesametime.(Remember
isThus,thenumeratorof
1
1
1
1
1
3
1
2
20
Finally,
1
2
2
31
(byLemma2)
2
2
221
1
(byLemma2)
21
Similarly,inthemultipleproducermodel,resourcesareproducedat1,2where1.Also,forthelargercycletimeconsumers,resourcesare2
,where1.BasedonLemma3,theresourcemapping,consumedat122
1,isanoptimalsolution.ByLemma4,weknowthat1.Therefore,if,,wereplace
with,thenwewillnotgetaworseproducer/consumerrelationbecause
.
A.7Lemma6
Withsharableresources,thefreshnessforalltheconsumedresourcesisunitsoftime.Allthe-consumertaskoccurrencesaresharingthetyperesourcefromthe-producerstartingsimultaneouslywithalltheconsumers.Theresourcesfromtheproducers,where1,arelessfresh.AndconsumingtheresourcesfromtheproducersviolatestheRestrictionpolicy(Policy1inSection2.5).Thus,sincewehaveconsumers,thenumeratorofis.Withnon-sharableresources,onlythefirstconsumer1canconsumethefrom,andthe
1
freshnessis.Thesecondconsumer2wouldhavetoconsumethefrom,whichimpliesthefreshnessis1(becauseis1).Ingeneral,thefreshnessofthethconsumeris1.Now,letuscomputetheratio:
3
1
3
where1
1
.
A.8Lemma7
Withsharableresources,thefreshnessforalltheconsumedresourcesisunitsoftime.Therefore,thenumeratorofis.
Withnon-sharableresources,ingeneral,thefreshnessoftheth-consumeris1,where
.So,max1121.Finally,1
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务