(12)发明专利申请
(10)申请公布号 CN 109521417 A(43)申请公布日 2019.03.26
(21)申请号 201811496593.X(22)申请日 2018.12.07
(71)申请人 哈尔滨工程大学
地址 150001 黑龙江省哈尔滨市南岗区南
通大街145号哈尔滨工程大学科技处知识产权办公室(72)发明人 王伟 段永昌 李欣 王峰 黄平 (51)Int.Cl.
G01S 13/58(2006.01)G01S 7/41(2006.01)
权利要求书4页 说明书10页 附图4页
CN 109521417 A(54)发明名称
基于FMCW雷达波形的多目标检测计算方法及一种FMCW雷达波形(57)摘要
本发明属于毫米波雷达技术领域,具体涉及基于FMCW雷达波形的多目标检测计算方法及一种FMCW雷达波形。本发明设计的波形包括调频波LFM部分和恒频波CF部分。首先通过LFM的回波数据得到所有可能目标的两组距离和速度信息;然后通过恒频波得到目标的速度信息,并利用该速度信息对目标的两组距离和速度信息进行筛选,从而消除一部分虚假目标;最后,对筛选掉虚假目标的两组距离和速度信息进行匹配,再次去除虚假目标。通过对匹配后的目标信息进行最小二乘法处理,进一步提高距离和速度的精度。本发明设计的FMCW雷达波形结合LFM和CF的优点,简化了计算,减少了硬件存储空间。
CN 109521417 A
权 利 要 求 书
1/4页
1.基于FMCW雷达波形的多目标检测计算方法,其特征在于,包括如下步骤:(1)根据FMCW雷达波形产生调频连续波,调频连续波一路由天线发射,一路作为本振与回波信号混频得中频信号;所述的FMCW雷达波形包括调频波LFM部分和恒频波CF部分;所述的调频波LFM部分分为四个调制阶段:第一个阶段为频率上升段1即up1、第二个阶段为频率上升段2即up2、第三个阶段为频率下降段3即down3、第四个阶段为频率下降段4即down4;所述的恒频波CF部分为FMCW雷达波形的第五个调制阶段
(2)对中频信号进行AD采样,按照发射信号的不同调制阶段将采样之后的数据分成数据段1~数据段5,对每个数据段进行傅里叶变换FFT,并对FFT之后的数据做恒虚警检测CFAR,得到目标的个数P及目标在每个数据段的频率信息;
(3)利用数据段5得到的频率信息求取目标的速度信息vp(p=1,2...P)和速度匹配误差Δv;
(4)对数据段1和数据段4得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第一组距离和速度信息
(5)对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
(6)根据速度匹配误差Δv和距离匹配误差ΔR,对步骤4、5中得到的两组距离和速度信息进行匹配,再次去除虚假目标,得到真实目标的两组距离和速度信息;
(7)对步骤(6)得到的真实目标的两组距离和速度信息利用最小二乘法处理,最终得到高精度的距离和速度信息
2.根据权利要求1所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(1)中调频连续波由天线发射具体包括:根据调制斜率不同的五段调制波在DSP里产生五段调制波并输出给DA,由DA输出给压控振荡器VCO,VCO产生的调制信号经过功放输出给天线并由天线发送至自由空间;上升段1即up1作为本振与回波信号混频得中频信号的过程具体为:发射信号的数学模型表达式如下
其中,表示发射信号频率是时间的线性函数,Bup1是第一段调制波调频带
宽,T是第一段调制波周期,τ是发射信号时间内的微小间隔,fc是载波频率,AT是发射信号的幅值;
接收的回波信号表达式如下
2
CN 109521417 A
权 利 要 求 书
2/4页
其中Kr表示与目标反射强度及信号传播衰减相关的常数,fd和fR分别表示Doppler频率及距离和速度产生的频率,td是与距离有关的延迟,sT(t)与sR(t)在时间域进行混频,并通过低通滤波器得到第一段对应的中频信号
Ri和vi分别表示第i个目标的速度和距离信息,c表示光速;
其他阶段根据发射信号产生中频信号的过程同上升段1即up1一致。3.根据权利要求1所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(2)处理过程具体为:由于发射信号分为五个阶段,根据发射信号与中频信号的对应关系将AD采样的中频信号成数据段1~数据段5,即数据段1~数据段5分别对应发射信号的五个调制阶段,然后对每个阶段的中频信号进行FFT及CFAR处理估计出目标的频率信息,数据段1和数据段4产生目标的个数P及目标频率信息的具体过程包括:
其中,N表示AD采样的数据长度,Sb,up1和Sb,down4分别表示数据段1和数据段4对应的采样之后的中频信号,Sb,up1(k)和Sb,down4(k)是sb,up1(n)和sb,down4(n)经过FFT之后的结果;
P=Count{Sb,up1(k)>CFAR(Sb,up1(k))}其中P表示目标的总个数,CFAR(Sb,up1(k))表示对Sb,up1(k)恒虚警检测的结果,Count表示对Sb,up1(k)大于CFAR(Sb,up1(k))的幅值个数进行统计,统计的结果即为目标的个数;
fup1,i和fdown4,j分别对应Sb,up1(k)和Sb,down4(k)经过CFAR处理之后得到的目标频率信息;
其他数据段产生目标的个数P及目标频率信息的处理过程同数据段1和数据段4一致。4.根据权利要求1所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(3)中求取目标的速度信息vp表达式如下
其中,vp和fd,p分别表示第p个目标的速度信息和Doppler频率,速度匹配误差Δv由系统速度分辨率得到,表达式如下
其中fc表示载波的频率,c表示光速,T表示调频周期。
5.根据权利要求1所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(4)过程所描述的遍历的方法是指将每个fup1,i与每个fdown4,j(i,j∈[1,P])进行配对得到
表达式如下
3
CN 109521417 A
权 利 要 求 书
3/4页
其中Bup1和Bdown4表示第一段和第四段扫频信号的带宽,信息,另外利用数据段5得到的速度信息vp(p=1,2...P)对
满足
配对得到的距离和速度
进行筛选是指
其中u∈[1,U],U是第一组距离和速度信息的总个数。
6.根据权利要求5所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(5)中对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
的过程与步骤(4)一致,其中W是第二组距离和速度信息的总个
数。
7.根据权利要求1所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(6)中距离匹配误差ΔR是系统的距离分辨率,表达式如下
其中c表示光速,T表示调频周期,Bup1表示第一段扫频信号的带宽;利用
和
进行匹配的过程为:根据极
大似然估计的理论,若两组目标满足如下不等式即认定为真实目标
经过上述过程处理之后中真实目标的距离速度信息为中真实目标的距离速度信息为
其中P表示真实目标个数,该参数已经在步骤(2)中得到。
8.根据权利要求7所述的基于FMCW雷达波形的多目标检测计算方法,其特征在于:所述步骤(7)中对两组距离和速度信息利用最小二乘法处理是指对于同一目标的两组参数做如下处理
其中是最终得到的速度和距离信息,即本发明计算方法输出结果。
4
CN 109521417 A
权 利 要 求 书
4/4页
9.一种FMCW雷达波形,其特征在于:包括调频波LFM部分和恒频波CF部分;所述的调频波LFM部分分为四个调制阶段:第一个阶段为频率上升段1即up1、第二个阶段为频率上升段2即up2、第三个阶段为频率下降段3即down3、第四个阶段为频率下降段4即down4;所述的恒频波CF部分为FMCW雷达波形的第五个调制阶段。
5
CN 109521417 A
说 明 书
1/10页
基于FMCW雷达波形的多目标检测计算方法及一种FMCW雷达
波形
技术领域
[0001]本发明属于毫米波雷达技术领域,具体涉及基于FMCW雷达波形的多目标检测计算方法及一种FMCW雷达波形。
背景技术
[0002]FMCW雷达系统已广泛应用于健康监测,非接触式医疗护理,自适应巡航。FMCW雷达的基本思想是利用发射信号和接收信号的差频信息得到目标的速度和距离信息,由于存在传输延时和Doppler效应,因此在多目标环境中,传统的FMCW雷达存在速度距离耦合、虚警率高等问题。对于距离—速度耦合及虚警率问题,主要有三种解决的方案,基于锯齿波调制的方案、基于梯形波调制的方案和基于三角波调制的方案。[0003]对于锯齿波调制方案,主要缺点在于很难得到高线性度且调制斜率变化极快的调频信号,另外,该方案还存在短时内需要处理数据量较大的问题,例如,为了满足速度1m的距离分辨率,一般需要采集128个周期的回波信号,对离散之后的中频信号进行二维快速傅里叶变换即2D-FFT需要更长的处理时间,需要消耗更多的硬件资源。在使用该方案时,由于高速目标的存在,速度模糊的现象会对目标的精度产生较大的影响。[0004]相比于锯齿波调制方案,梯形波调制和三角波调制有如下优势,只需要进行一维傅里叶变换FFT即可获得速度和距离信息,降低了计算的复杂度。另外,梯形波和三角波调制方案对射频前端的硬件要求都不高,因为调制波的周期都在毫秒量级。但是,传统的梯形波调制和三角波调制方案都存在虚警和漏警问题。针对虚警率的问题,在Radar Waveform Design and Multi-target Detection in Vehicular Applications,ICEDIF International Conference,2015:286-289这篇文章提出了改进的梯形波方案,该方案通过改变不同调制周期内梯形波的带宽达到去除虚假目标的目的,但该方案仍然存在漏警的问题。在An Improved Waveform for Multi-target Detection in FMCW Vehicle Radar,International Conference on Mechatronics,2016这篇文章中提出了一种改进的波形,波形的优点在于通过增加一段斜率变化的斜波信号,达到降低虚警率的目的。波形的缺点是由于对带宽分配的不合理,严重影响了系统的探测精度。这篇文章Two-Step Moving Target Detection Algorithm for Automotive 77 GHz FMCW Radar,VTC 2010 Fall,2010,1-5.Design of an FMCW Radar Baseband Signal Processing System for Automotive Application,Journal of Sensors,2016,5(42):308-312也提出了改进的波形,它们可以达到改善多目标环境中消除虚假目标的目的,但是它们存在配对算法复杂,计算量大等问题。
发明内容
[0005]本发明的目的在于提出一种减少多目标环境中虚假目标的问题的基于FMCW雷达波形的多目标检测的计算方法。
6
CN 109521417 A[0006]
说 明 书
2/10页
本发明的目的是这样实现的:
[0007]基于FMCW雷达波形的多目标检测计算方法,包括如下步骤:[0008](1)根据FMCW雷达波形产生调频连续波,调频连续波一路由天线发射,一路作为本振与回波信号混频得中频信号;所述的FMCW雷达波形包括调频波LFM部分和恒频波CF部分;所述的调频波LFM部分分为四个调制阶段:第一个阶段为频率上升段1即up1、第二个阶段为频率上升段2即up2、第三个阶段为频率下降段3即down3、第四个阶段为频率下降段4即down4;所述的恒频波CF部分为FMCW雷达波形的第五个调制阶段[0009](2)对中频信号进行AD采样,按照发射信号的不同调制阶段将采样之后的数据分成数据段1~数据段5,对每个数据段进行傅里叶变换FFT,并对FFT之后的数据做恒虚警检测CFAR,得到目标的个数P及目标在每个数据段的频率信息;[0010](3)利用数据段5得到的频率信息求取目标的速度信息vp(p=1,2...P)和速度匹配误差Δv;[0011](4)对数据段1和数据段4得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第一组距离和速度信息
[0012]
(5)对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
(6)根据速度匹配误差Δv和距离匹配误差ΔR,对步骤4、5中得到的两组距离和速度信息进行匹配,再次去除虚假目标,得到真实目标的两组距离和速度信息;[0014](7)对步骤(6)得到的真实目标的两组距离和速度信息利用最小二乘法处理,最终得到高精度的距离和速度信息
[0015]
[0013]
所述步骤(1)中调频连续波由天线发射具体包括:根据调制斜率不同的五段调制波在DSP里产生五段调制波并输出给DA,由DA输出给压控振荡器VCO,VCO产生的调制信号经过功放输出给天线并由天线发送至自由空间;上升段1即up1作为本振与回波信号混频得中频信号的过程具体为:发射信号的数学模型表达式如下
[0016][0017]
其中,表示发射信号频率是时间的线性函数,Bup1是第一段调制波调
频带宽,T是第一段调制波周期,τ是发射信号时间内的微小间隔,fc是载波频率,AT是发射信号的幅值;
[0018]接收的回波信号表达式如下
[0019]
7
CN 109521417 A[0020]
说 明 书
3/10页
其中Kr表示与目标反射强度及信号传播衰减相关的常数,fd和fR分别表示Doppler
频率及距离和速度产生的频率,td是与距离有关的延迟,sT(t)与sR(t)在时间域进行混频,并通过低通滤波器得到第一段对应的中频信号
[0021]
Ri和vi分别表示第i个目标的速度和距离信息,c表示光速;
[0023]其他阶段根据发射信号产生中频信号的过程同上升段1即up1一致。[0024]所述步骤(2)处理过程具体为:由于发射信号分为五个阶段,根据发射信号与中频信号的对应关系将AD采样的中频信号成数据段1~数据段5,即数据段1~数据段5分别对应发射信号的五个调制阶段,然后对每个阶段的中频信号进行FFT及CFAR处理估计出目标的频率信息,数据段1和数据段4产生目标的个数P及目标频率信息的具体过程包括:
[0022]
[0025]
其中,N表示AD采样的数据长度,Sb,up1和Sb,down4分别表示数据段1和数据段4对应的采样之后的中频信号,Sb,up1(k)和Sb,down4(k)是sb,up1(n)和sb,down4(n)经过FFT之后的结果;[0027]P=Count{Sb,up1(k)>CFAR(Sb,up1(k))}[0028]其中P表示目标的总个数,CFAR(Sb,up1(k))表示对Sb,up1(k)恒虚警检测的结果,Count表示对Sb,up1(k)大于CFAR(Sb,up1(k))的幅值个数进行统计,统计的结果即为目标的个数;
[0029][0030]
[0026]
fup1,i和fdown4,j分别对应Sb,up1(k)和Sb,down4(k)经过CFAR处理之后得到的目标频率其他数据段产生目标的个数P及目标频率信息的处理过程同数据段1和数据段4一所述步骤(3)中求取目标的速度信息vp表达式如下
信息;
[0031]
致。
[0032][0033]
其中,vp和fd,p分别表示第p个目标的速度信息和Doppler频率,速度匹配误差Δv
由系统速度分辨率得到,表达式如下
[0035][0036][0037]
[0034]
其中fc表示载波的频率,c表示光速,T表示调频周期。
所述步骤(4)过程所描述的遍历的方法是指将每个fup1,i与每个fdown4,j(i,j∈[1,
表达式如下
8
P])进行配对得到
CN 109521417 A
说 明 书
4/10页
[0038]
[0039]其中Bup1和Bdown4表示第一段和第四段扫频信号的带宽,配对得到的距离和
进行筛选是指
速度信息,另外利用数据段5得到的速度信息vp(p=1,2...P)对
满足
其中u∈[1,U],U是第一组距离和速度信息的总个数。
[0041]所述步骤(5)中对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
的过程与步骤(4)一致,其中W是第二组距离和速度信息的总个
数。
[0042][0043][0044][0045]
[0040]
所述步骤(6)中距离匹配误差ΔR是系统的距离分辨率,表达式如下
其中c表示光速,T表示调频周期,Bup1表示第一段扫频信号的带宽;利用
和
进行匹配的过程为:
根据极大似然估计的理论,若两组目标满足如下不等式即认定为真实目标
[0046]
[0047]经过上述过程处理之后中真实目标的距离速度信息为中真实目标的距离速度信息为
其中P表示真实目标个数,该参数已经在步骤(2)中得到。
[0048]
所述步骤(7)中对两组距离和速度信息利用最小二乘法处理是指对于同一目标的两组参数做如下处理
[0049]
[0050][0051]
其中是最终得到的速度和距离信息,即本发明计算方法输出结果。
本发明的目的还在于提供一种用于多目标检测计算方法实现的FMCW雷达波形:
[0052]一种FMCW雷达波形,包括调频波LFM部分和恒频波CF部分;所述的调频波LFM部分分为四个调制阶段:第一个阶段为频率上升段1即up1、第二个阶段为频率上升段2即up2、第
9
CN 109521417 A
说 明 书
5/10页
三个阶段为频率下降段3即down3、第四个阶段为频率下降段4即down4;所述的恒频波CF部分为FMCW雷达波形的第五个调制阶段。[0053]本发明的有益效果在于:
[0054]本发明设计了一种新的FMCW波形,并提出了一种优化的多目标检测计算方法。改进的波形FMCW波形结合LFM和CF的优点,有利于多目标检测计算方法的实现。与传统方法相比,本发明利用两次筛选进一步减少了虚假目标。通过数据段5得到的速度信息对两组目标进行筛选,以消除一部分虚假目标;最后,对两组目标进行距离信息匹配,再次删除虚假目标。通过对匹配后的目标信息进行最小二乘法处理,进一步提高了距离和速度的精度。所提出的计算方法应用在多目标环境中可以有效地消除虚假目标。附图说明
[0055]图1是FMCW雷达系统框图;
[0056]图2(a)是发射信号和接收信号的频率-时间图;[0057]图2(b)是发射信号和接收信号对应的差频信息;
[0058]图3是传统FMCW雷达调制方案对四个目标的仿真效果图;[0059]图4是本发明所设计的调制波形;
[0060]图5是本发明提出的多目标检测计算方法;
[0061]图6是数据段1和数据段4处理之后虚警分布图;[0062]图7是数据段2和数据段3处理之后虚警分布图;[0063]图8是本发明计算方法在多目标场景下的处理效果。
具体实施方式
[0064]下面结合附图对本发明进一步详细说明。[0065]本发明设计了一种新的FMCW波形,并提出了一种优化的多目标检测计算方法。设计的波形由两部分组成:调频波(Linear Frequency Modulation,LFM)部分和恒频波(Constant Frequency,CF)部分。首先通过LFM的回波数据得到所有可能目标的两组距离和速度信息;然后通过恒频波得到目标的速度信息,并利用该速度信息对目标的两组距离和速度信息进行筛选,从而消除一部分虚假目标;最后,对筛选掉虚假目标的两组距离和速度信息进行匹配,再次去除虚假目标。通过对匹配后的目标信息进行最小二乘法处理,进一步提高了距离和速度的精度。改进的波形结合LFM和CF的优点,简化了计算,减少了硬件存储空间。与传统计算方法相比,本发明利用两次筛选过程进一步减少了虚假目标。[0066]基于FMCW雷达波形的多目标检测计算方法,包括如下步骤:[0067](1)根据FMCW雷达波形产生调频连续波,调频连续波一路由天线发射,一路作为本振与回波信号混频得中频信号;所述的FMCW雷达波形包括调频波LFM部分和恒频波CF部分;所述的调频波LFM部分分为四个调制阶段:第一个阶段为频率上升段1即up1、第二个阶段为频率上升段2即up2、第三个阶段为频率下降段3即down3、第四个阶段为频率下降段4即down4;所述的恒频波CF部分为FMCW雷达波形的第五个调制阶段[0068](2)对中频信号进行AD采样,按照发射信号的不同调制阶段将采样之后的数据分成数据段1~数据段5,对每个数据段进行傅里叶变换FFT,并对FFT之后的数据做恒虚警检
10
CN 109521417 A
说 明 书
6/10页
测CFAR,得到目标的个数P及目标在每个数据段的频率信息;[0069](3)利用数据段5得到的频率信息求取目标的速度信息vp(p=1,2...P)和速度匹配误差Δv;[0070](4)对数据段1和数据段4得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第一组距离和速度信息
[0071]
(5)对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
(6)根据速度匹配误差Δv和距离匹配误差ΔR,对步骤4、5中得到的两组距离和速度信息进行匹配,再次去除虚假目标,得到真实目标的两组距离和速度信息;[0073](7)对步骤(6)得到的真实目标的两组距离和速度信息利用最小二乘法处理,最终得到高精度的距离和速度信息
[0074]
[0072]
所述步骤(1)中调频连续波由天线发射具体包括:根据调制斜率不同的五段调制波在DSP里产生五段调制波并输出给DA,由DA输出给压控振荡器VCO,VCO产生的调制信号经过功放输出给天线并由天线发送至自由空间;上升段1即up1作为本振与回波信号混频得中频信号的过程具体为:发射信号的数学模型表达式如下
[0075][0076]
其中,表示发射信号频率是时间的线性函数,Bup1是第一段调制波调
频带宽,T是第一段调制波周期,τ是发射信号时间内的微小间隔,fc是载波频率,AT是发射信号的幅值;
[0077]接收的回波信号表达式如下
[0078]
其中Kr表示与目标反射强度及信号传播衰减相关的常数,fd和fR分别表示Doppler
频率及距离和速度产生的频率,td是与距离有关的延迟,sT(t)与sR(t)在时间域进行混频,并通过低通滤波器得到第一段对应的中频信号
[0080]
[0079]
Ri和vi分别表示第i个目标的速度和距离信息,c表示光速;
[0082]其他阶段根据发射信号产生中频信号的过程同上升段1即up1一致。[0083]所述步骤(2)处理过程具体为:由于发射信号分为五个阶段,根据发射信号与中频信号的对应关系将AD采样的中频信号成数据段1~数据段5,即数据段1~数据段5分别对应
11
[0081]
CN 109521417 A
说 明 书
7/10页
发射信号的五个调制阶段,然后对每个阶段的中频信号进行FFT及CFAR处理估计出目标的频率信息,数据段1和数据段4产生目标的个数P及目标频率信息的具体过程包括:
[0084]
其中,N表示AD采样的数据长度,Sb,up1和Sb,down4分别表示数据段1和数据段4对应的采样之后的中频信号,Sb,up1(k)和Sb,down4(k)是sb,up1(n)和sb,down4(n)经过FFT之后的结果;[0086]P=Count{Sb,up1(k)>CFAR(Sb,up1(k))}[0087]其中P表示目标的总个数,CFAR(Sb,up1(k))表示对Sb,up1(k)恒虚警检测的结果,Count表示对Sb,up1(k)大于CFAR(Sb,up1(k))的幅值个数进行统计,统计的结果即为目标的个数;
[0088][0089]
[0085]
fup1,i和fdown4,j分别对应Sb,up1(k)和Sb,down4(k)经过CFAR处理之后得到的目标频率其他数据段产生目标的个数P及目标频率信息的处理过程同数据段1和数据段4一所述步骤(3)中求取目标的速度信息vp表达式如下
信息;
[0090]
致。
[0091][0092]
其中,vp和fd,p分别表示第p个目标的速度信息和Doppler频率,速度匹配误差Δv
由系统速度分辨率得到,表达式如下
[0094][0095][0096]
[0093]
其中fc表示载波的频率,c表示光速,T表示调频周期。
所述步骤(4)过程所描述的遍历的方法是指将每个fup1,i与每个fdown4,j(i,j∈[1,
表达式如下
P])进行配对得到
[0097]
[0098]其中Bup1和Bdown4表示第一段和第四段扫频信号的带宽,配对得到的距离和
进行筛选是指
速度信息,另外利用数据段5得到的速度信息vp(p=1,2...P)对
满足
[0099]
其中u∈[1,U],U是第一组距离和速度信息的总个数。
12
CN 109521417 A[0100]
说 明 书
8/10页
所述步骤(5)中对数据段2和数据段3得到的目标频率采用遍历的方法进行配对,
并利用数据段5得到的速度信息vp,p=1,2...P进行筛选,得到第二组距离和速度信息
的过程与步骤(4)一致,其中W是第二组距离和速度信息的总个
数。
[0101][0102][0103][0104]
所述步骤(6)中距离匹配误差ΔR是系统的距离分辨率,表达式如下
其中c表示光速,T表示调频周期,Bup1表示第一段扫频信号的带宽;利用
和
进行匹配的过程为:根
据极大似然估计的理论,若两组目标满足如下不等式即认定为真实目标
[0105]
[0106]经过上述过程处理之后中真实目标的距离速度信息为中真实目标的距离速度信息为
其中P表示真实目标个数,该参数已经在步骤(2)中得到。
[0107]
所述步骤(7)中对两组距离和速度信息利用最小二乘法处理是指对于同一目标的两组参数做如下处理
[0108]
[0109][0110]
其中是最终得到的速度和距离信息,即本发明计算方法输出结果。
图1雷达系统结构图,包括发射信号单元、接收信号单元、混频器、低通滤波器、A/D
模块及中频信号处理模块。整个系统的工作机制描述如下,调制之后的三角波信号由发射天线发射,经过目标反射之后由接收天线接收,发射信号与接收信号进行混频,得到中频信号经过AD转换之后送入信号处理芯片进行处理,得到目标的估计距离。[0111]图2是FMCW雷达工作原理,传统的调制方案采用三角波与恒频波结合的方式,由图2(a)图可知静止目标反射的回波只是在时间轴上有平移,而移动目标的反射信号在时间轴和频率轴上都有平移,这是因为,静止目标回波信号的延迟仅由距离产生,而移动目标的延迟还与Doppler有关。差频信息可通过接收信号与发射信号直接做差频得到,示意图如图2(b)图所示。
[0112]图3是传统的FMCW调制方案对四个目标的仿真效果图,按照该方案提取目标的规则可以从图中得到六个目标,四个真实的目标即圆圈标注的数据点,两个虚假目标即矩形标注的数据点。这是通过上扫频和下扫频直接配对得到的数据点,除了真实的目标点满足速度的筛选条件,仍然有两个虚假目标点满足筛选条件,图中target表示真实的目标,另
13
CN 109521417 A
说 明 书
9/10页
外,当上扫频得到的中频频率已知时vup是指通过是关于Rup的一次函数,同理,当下扫频得到的中频频率已知时vdown是指通过是关于Rdown的一次函数,其中vup和vdown分别表示通过传统的FMCW得到的速度信息,vd是由Doppler频率得到的速度信息。[0113]图4是本文所设计的调制波,LFM部分分为4个阶段,恒频波为数据段5。其中第一个调频阶段up1和第四个调频阶段down4的带宽都是B1,对应的调制斜率分别是B1/T和-B1/T;其中第二个调频阶段up2和第三个调频阶段down3的带宽都是B2,对应的调制斜率分别是B2/T和-B2/T,另外,数据段5具有恒定的调制斜率,用于求取所有真实目标的Doppler频率,从而利用速度信息对目标筛选同时有效地避免了目标的漏警问题。[0114]图5是本文提出的多目标检测的计算方法流程图,该流程图是对步骤1~步骤7的系统概括。由图可知,本发明计算方法包括两次目标筛选过程,第一个过程是利用数据段1、数据段4及数据段5的组合及数据段2、数据段3及数据段5的组合进行筛选,去掉一部分虚假目标,第二个过程是利用筛选之后的两组信息做匹配,进一步减少虚假目标。[0115]图6中由fup1,i建立的速度和距离函数关系,简记为vup1、由fdown4,j建立的速度和距离函数关系,简记为vdown4、由fd,p建立的Doppler速度和距离关系为直线,简记为vp。圆圈与矩形标注的交点都是匹配之后得到的目标点,其中target表示真实目标,矩形标注的交点表示虚假目标。
[0116]图7中由fup2,i建立的速度和距离函数关系,简记为vup2、由fdown3,j建立的速度和距离函数关系,简记为vdown3、由fd,p建立的Doppler速度和距离关系为直线,简记为vp。圆圈与矩形标注的交点都是匹配之后得到的目标点,其中target表示真实目标,矩形标注的交点表示虚假目标。
[0117]图6中有十个目标即圆圈和矩形标注的点,包括四个虚假目标即矩形标注的点。图7中包括八个目标,其中两个是虚假目标。将图6作为参考图,图7中获得的虚假目标点与图6中的结果相比具有偏移量,该偏移量导致虚假目标点不再满足速度的筛选条件
因此在利用图6和图7做目标匹配时,虚假的目标点将被筛选掉,而真正的目
标点满足筛选条件被保留下来。
[0118]图8是所提出的方法与对比方法处理的效果图,对比方法在An improved waveform for multi-target detection in FMCW vehicle radar,International Conference on Mechatronics,Control and Materials.2016.文章中提出,由图可知对比方法得到的目标数据仍含有虚假目标而本文所提出的方法得到的目标信息不含有虚假目标。
[0119]表1是如图2所示的传统调制方案与本发明所设计调制方案的相关参数[0120]表2是提出的方法与参考方法精度对比[0121]表1
14
CN 109521417 A
说 明 书
10/10页
[0122]
[0123]
表2
[0124]
[0125]
表2是图8所得到的真实目标的精度对比,由表可知,所提出的方法处理之后的距
离及速度的精度优于对比方法。这是因为所提出的方法充分的利用了匹配后的目标的两组信息。
15
CN 109521417 A
说 明 书 附 图
1/4页
图1
图2(a)
图2(b)
16
CN 109521417 A
说 明 书 附 图
2/4页
图3
图4
17
CN 109521417 A
说 明 书 附 图
3/4页
图5
图6
18
CN 109521417 A
说 明 书 附 图
4/4页
图7
图8
19
因篇幅问题不能全部显示,请点此查看更多更全内容