UPR-769-T,hep-th/9708090
BlackHoleHorizonsandtheThermodynamicsofStrings∗
arXiv:hep-th/9708090v2 3 Sep 1997MirjamCvetiˇcandFinnLarsenDavidRittenhouseLaboratoriesUniversityofPennsylvaniaPhiladelphia,PA19104
Wereviewtheclassicalthermodynamicsandthegreybodyfactorsofgeneral(rotating)non-extremeblackholesanddiscussuniversalfeaturesoftheirnear-horizongeometry.Wemotivateamicroscopicinterpretationofgeneralblackholesthatrelatesthethermodynamicsofaneffectivestringtheorytothegeometryoftheblackholeinthevicinityofboththeouterandtheinnereventhorizons.Inthisframeworkweinterpretseveralnear-extremeexamples,theuniversallow-energyabsorptioncross-section,andtheemissionofhigherpartialwavesfromgeneralblackholes.
1.Introduction
Inthelastfewyearsaprecisecorrespondencebetweencertainblackholesandquantumstatesinstringtheoryhasbeenfound.Inparticular,thedegeneraciesofboundstatesofD-braneshavebeencalculatedandforlargechargestheresultagreeswiththeBekenstein-Hawkingarealawfortheblackholeentropy[1].TheconfigurationsthatallowforthepreciseargumentsareBPSsat-urated,i.e.theyaresupersymmetricblackholeswithzerotemperature.Itisinterestingtocon-sideralsothenear-BPSconfigurationsbecausetheyexhibitnon-trivialthermodynamicalprop-erties.Thereisagreementbetweenstringtheoryandthemacroscopicblackholepropertiesinthiscase[2,3]also,butthereasoningislesssecurelyfoundedinthemicroscopictheory.Itisthere-foreimportantthatthecountingofmicroscopicstatescanbesupplementedwithcomparisonsofdynamicalprocesses[4–6]:therateofHawkingdecayandthepreciseenergydependenceoftheradiationinthesemi-classicaltheoryisinagree-mentwiththatinthestringmodel.Theseresultsgivestrongsupporttotheidentificationofthe
2
Thiscontributionisbasedonworkpresentedin[11–14].Itisorganizedasfollows.Insec.2itisexplainedhowsomefeaturesofanunderlyingstringdescriptioncanbereadoffdirectlyfromtheclassicalgeometry.Insec.3wemaketheseideasexplicitinthecontextofthestatisticalme-chanicsofthemostgeneralfivedimensionalblackholes.WeshowthatpreviouslyknownresultsarerecoveredintheBPSandnear-BPSlimits;andwediscusssometestsoftheextensiontothegeneralnon-extremecase.Thefourdimensionalcaseismoreinvolvedthanthefive-dimensionalonebut,asdiscussedin[14],mostresultsnever-thelesscarryoverwithonlyminormodifications.AsexplainedabovethemostdetailedtestofthecorrespondencebetweenblackholesandstringsisthatthespectrumoftheHawkingradiationagreesinthetwodescriptions.Insec.4wede-velopthisapproachbydiscussingthefeaturesofthefieldequationofaminimallycoupledscalar.Insec.5weusetheseresultstofindthegrey-bodyfactorsoftheblackholesandhighlighttheirstringtheoryinterpretation.Thisprovidesatestofthegeometricpicturepresentedinsec.2.Insec.6wesummarizethesuccessesandthelim-itationsofthestringdescriptionofnon-extremeblackholes.
2.ThermodynamicsofStringsandGeom-etryofBlackHolesAcharacteristicfeatureofstringsisthattheirspectrumdividesintotwodistinctsectorsassoci-atedwiththeright(R)andleft(L)movingexcita-tions,respectively.Thespaceofstatesthereforedecomposesintoadirectproductoftwospaces.Consequentlytheentropy,calculatedfromthede-generaciesofthesestates,isthesumoftwocon-tributions:S=SR+SL.
(1)
TheconditionforthisdivisiontobemeaningfulisthatthecouplingbetweentheR-andL-movingmodesismuchweakerthanthecouplingwithineachsector.Underthesameconditiontwoinde-pendenttemperaturescanbeintroduced;TR,LforfortheR-andL-movingmodes,respectively.Thetemperatureofthecombinedsystemisrelatedto
thatofitspartsas:
TH−1=
1
4G,(3)
N
andtheHawkingtemperatureisrelatedtothesurfaceaccelerationattheoutereventhorizonκ+as:
TκH=
+
+
2
(
A4G),(5)
N
whereA±aretheareasoftheinnerandoutereventhorizons;andtheR–andL–movingtem-peratures:1
κ+
±2π
∂M
)anunfamiliarideathatQ,J.
Itistheinnereventhorizonplaysanyroleatall,asitiseffectivelyisolatedfromanoutsideobserver.Theultimatejustificationofthisideacomesfromitsapplica-tions;thecalculationspresentedinthefollowingsectionsindeedsupportthat,atleastformally,the“contributions”fromtheinnerandtheouterhorizonappearonequalfooting.
3.GeneralBlackHolesinStringTheory—theFive-DimensionalExampleAstheworkingexampleweconsiderthemostgeneralfive-dimensionalblackholeintoroidallycompactifiedstringtheory.ItdependsontheADMmass,M,threeU(1)chargesQi,andtwoangularmomentaJR,L.Weparameterizethesephysicalvariablesbythenon-extremalityparam-eterµ,thethreeboostparametersδi,andthe(bare)angularmomentumparametersl1,2intro-ducedthrough:M
=
1
2µsinh2δi
;i=1,2,3,(8)
JR,L=
1
4
(α′)4g2/(R1R2R3R4R5)=
π
3
gα′
(D1−branes)(10)
Q2
=
n2R1R2R3R4R5
R(KK−charge)(12)
1
Theseassignmentswillbeassumedfordefinite-ness,butmanyotherchoicesareequivalentbyduality2.Indeed,dualitytransformationsinthemaximalcompactsubgroupofthefulldualitygroupgeneratethemostgeneralblackhole[16]whentheyactonthegeneratingsolutiondefinedby(7–9)3.(Thisprocedurewasmadeexplicitin[18].)
Fromtheexplicitlyknownsolutionstheareasoftheinnerandouterhorizonscanbereadoff[15,11].Theentropiescalculatedusing(5)become:
SR,L=2π4µ3(Accordingtoourinterpretationicoshδi∓isinhδi)2−JR,L
2
(13)theseexpressionsshouldbeidentifiedwiththeentropiesoftheR–andL–movingmodesoftheunderlyingstringthe-ory.
TheR–andL–movingtemperaturesaresimi-larlycalculatedfromthesurfaceaccelerationsattheinnerandoutereventhorizons,usingeq.(6).Theyare:1
(14)
4
µ3(
i
coshδi∓
i
sinhδi)2
−JR,L
2Thephysicalcontentoftheseformulaebecomes
clearerinvariouslimitingcasesthatweconsiderinthefollowing.TheBPSlimit:
Theextremalcasecorrespondstothelimitwhereδi→∞.Thislimitisonlyregularwhen
4
alsoJRofthethree→0.charges:TheBPSmassisgivenbythesumM=Q1+Q2+Q3;
(15)
sotheblackholecanbeinterpretedasamarginalboundstateofthreekindsofobjects.Thede-generacyofthiscompositeobjectisgivenbythe(exponentialof)theentropy[19]:
S=2π
n1n2n3−JL2.(16)Intheintermediatestepthequantizationcondi-tions(10–12)onthechargeswereused.Themod-ulicancelout[9,10,20]sothattheentropycan
beinterpreteddirectlyintermsoftheunderly-ingconstituents.NotethatSR=0andS=SL;sointheBPS-limittheblackholeentropydoesnotdivideintotwoterms.Accordingto(5)theR–movingcontributionindeedvanishesinthege-ometricinterpretationbecausethetwohorizonscoincide.
Thestringtheorycalculationthatleadsto(16)takesasitsstartingpointthesuperconformalfieldtheory(SCFT)withthetargetspace[1]:C=(T4)n1n2/Σn1n2,
(17)
andleveln3.HereΣkisthepermutationgroupofkobjects.Itactsontheproductmanifoldinanorbifoldconstructionandintroducestwistedsec-torsthatcontributefractionallytothemomen-tum[21–23].Intheblackholelimititisthesec-torwiththemaximalfractionationthatprovidesthemostimportantcontribution.Thecontribu-tionofthissectorcanbecapturedbytheeffectivelevel:
NL=n1n2n3−JL2
,
(18)
ofasuperstringwithtargetspaceT4,ormore
generallyaSCFTwiththecentralchargec=6(ˆcπof=4).Indeed,(16)isrecoveredusingS≃2an6N,validatlargeN.Althoughtheconcepteffectivelevelisapproximateingeneralitbecomespreciseintheblackholeregime.Itisusefulbecauseitcapturesthesymmetrybetweenthethreechargesrequiredbyduality.
TheangularmomentumistheU(1)compo-nentofthelocalSU(2)world-sheetcurrentof
theN=4SCFT[19].Theprojectionontothesectorwithaspecificangularmomentumismul-tiplicationbyanoperatorwiththeappropriateU(1)world-sheetcharge,andthescalingdimen-sion(conformalweight)ofthisoperatorisrespon-siblefortheeffectivesubtractionofJL2
ineq.(18).ExtremeKerr-Newmanlimit:
Arelatedanalysiscanbeappliedtotheex-tremeKerr-Newmantypeblackholesolutions.Thislimitisachievedbytaking(l1ThenSR=0,again,andthusS=−l2)2SLwhich→µ.takestheS=2π
form:
δ3
4µe
∓2−JR,L2
.
(20)
Thecorrespondingentropiesindeedagreewitheq.(13)inthelimitwheretwoboostsarelarge.Thisverifiestheroleoftheinnerhorizoninthedilutegaslimit.Onelargeboost:
Thecasewhereonlyoneoftheboostsislarge,say,δ1≫1,canbemodeledsimilarly[25,26]:the
chargethatcorrespondstothelargeboostactsasabackgroundthatisinert,exceptthatitin-ducesthefractionation.Theexcessenergy,∆M,isdistributedamongthestatesinthespectruminawaythatissimilartothefundamentalstringwithbothmomentumandwindingcharge.Con-sideringfirstthestandardrelationofperturbativestringtheory:
Npert
R,L=∆M2)2=µ2cosh2(δ2Wealsotakeinto−(Q2account±Q3thefractionation∓δ3)(21)
andtheprojectionontoaspecificangularmomentumsector.Thentheeffectivelevelsbecome:
NR,L=Q1µ2cosh2(δ2∓δ3)−JR,L
2
.(22)
Thecorrespondingentropiesreproduceeq.(13)inthelimitwhereoneboostislarge,thusverify-ingtheroleoftheinnerhorizonintheregimeofonelargeboost.
Notethatthiscaseincludesgeneralnon-extremeblackholesintheinfinitemomentumframe.Thismayberelevantforthedescrip-tionofblackholesintheframeworkofM(atrix)-theory[27].
Thegeneralcase:
ThegeneralexpressionfortheBHentropy(13)canbeaccountedforquantitativelybyanon-criticalstringwithcentralchargecR=cL=6,excitedtotheeffectivelevels:NR,L=
1
5
6
TL,(25)
whereListhe“volume”—length—ofthegas.
Thus,using(13)forSand(14)forT,thelengthLoftheeffectivestringbecomes4:
L=2πµ2(
cosh2δi(26)
i
−
sinh2δi).i
Thislengthscaleisindependentoftheangu-larmomenta,whichprovidesanothertestofthemodel.Namely,instringtheoryangularmo-mentaareimplementedasprojectionsontheHilbertspaceofstatesanddonotaffectthelengthofthestring.Moreover,itissatisfyingthatthesamestringlengthLisfoundintheR–andL–movingsectors.LreducestoL=2πn1n2RintheBPS-limitbutthegeneralexpression(26)isalsovalidfornon-BPSblackholes.ThefactthattheeffectivestringlengthLincreaseswiththesizeoftheblackholeispotentiallyimportantfortheissueofinformationloss.Indeed,forlargeblackholesthescaleLismuchlargerthanthePlanckscale,wherestringeffectsareusuallyas-sumedtobecomeimportant.
Theseconsiderationsalsoapplytothestaticcaseswithoneormoreδi=0,includingtheSchwarzschildsolutionwithallδi=0.However,intheseexamplesSR=SLandTR=TL=TH;sothecharacteristicstringfeaturesofthethermo-dynamicsareabsent.Inthegeometricinterpreta-tionthisisaconsequenceofthedegeneratelimitofthevanishinginnerhorizonarea.However,thispresumablydoesnotimplyanylimitationinthestringdescription.Aplausibleinterpretationissimplythat,inthiscase,thereisanequilibriumbetweenthetwosectors.
6
4.TheWaveEquation—MinimallyCou-pledScalarFieldAdetailedtestofthecorrespondencebetweenblackholesandstringsisthespectrumofHawk-ingradiation.Aspreparationforthiscalculationweconsidergeneralpropertiesofthewaveequa-tionforaminimallycoupledscalarfield:
1
−g
∂µ(√2(r2+
+r2−)
2
andx=−1
4)∂xΦ0
+
1
R
x−1
κ)2
(30)
+−mΩR
κ+
L
−
1
(ω
2
κ+mΩ+
L
∂
r3
∂r
+ω2)Φ0=0.
(31)
ThisistheradialpartoftheKlein-Gordonequa-tioninflatspace.Thus,theterm14Mω
2
canbeinterpretedasthe
Coulomb-typescreeningduetothegravitationalfield.Atlargexthistermissuppressedrelativetoflatspacebyonepowerofx∼r2asexpectedforaCoulombpotentialinfivedimensions.
ThevariableΛistheeigenvalueoftheangularLaplacian.Ittakestheform:Λ=n(n+2)+O(ω2),
(32)
wherethecorrectionsO(ω2)areduetotherota-tionofthebackgroundandarediscussedin[13].
Thistermisalsosuppressedbyonepowerofx∼r2,asexpectedforanangularmomentumbarrier.
Thetermsconsideredsofararemanifestationsofthelongrangefieldsandtheflatasymptoticspace.Theremainingtwotermsdivergeattheouter(x=12)horizons,re-spectively,andsoarespecificforblackholeback-grounds.Themodesclosetotheouterhorizonbecome(takingmR=mL=0,andthusignoringtheeffectsofangularvelocities,ΩR,L,forsimplic-ity):Φ0∼(x−
1
2κ+
e−iωt.
(33)
Thebranch-cutaroundx=
1
2π,
awellknownresultfoundin
severaldifferentwaysintheseventies.
Themodesclosetotheinnerhorizonsimilarlybecome:Φ0∼(x+
1
2κ−
e−iωt.
(34)
Thesignificanceofthesemodesislessclearbe-causetheinnerhorizonisnotexpectedtohaveanyeffectsontheasymptoticobservers.How-ever,thereisastrikingparallelbetweenthetwohorizons.Itisthereforenaturaltosuspectthatthebranch-cutaroundx=−1
2π
combines
withtheHawkingtemperature,THtwonewtemperaturesT−1−1,and−1
forms
beattributedtheR–R,L=TandL–movingH±T−whichcanstringmodes,respectively.
HiddenSupersymmetry:
Forrotatingblackholestherearenotsuffi-cientlymanyconservedquantitiesthatthesepa-rationofvariablescanbeguaranteed.Itisthere-foreasurprisethatwewereabletodoso5.Ananalogoussurpriseiswellknowninthecontextoffour-dimensionalKerr-Newmanblackholes.Theretheseparationofvariablesisaconsequenceofconservedfermionicchargesthatarerelatedtothemorefamiliarconservedbosonicchargesbythesupersymmetryalgebra[30].Itisbe-lievedthatthesignificanceofthesupersymmetryinthiscontextisdifferentfromitsroleinparti-clephysics.However,itwouldbeinterestingtoreexaminethisquestioninlightoftherelationbetweenblackholesandsuperstrings.Stringsymmetries:
Thewaveequationintheregionclosetothehorizonshasasimpleformthatmaybeuniver-sal,astheidenticalequationappearsinbothfourandfivedimensions[14].Wenowexpressthisstructuremathematically.
WeintroducethedimensionlessRindlertimeτthatisaregulartime-likecoordinateclosetotheouterhorizon.Themonodromyaroundthecoordinatesingularityisencodedbyanimagi-naryperiod2πiTH
ω
.Withtheseauxiliaryvariablesthe
radial1
equation(30)(withouttheflatspaceterm
4)∂x
−
1
∂22
τ+
1
∂2
2
σ
(35)
withtheeigenvalue
1
5We
wouldliketothankG.Gibbonsforpointingthisout.
7
similardescriptionhaspreviouslyappearedinthecontextofexactconformalfieldtheoriesthatde-scribetwo-dimensionalblackholes,butthere-lationwiththepresentresultsisnotclear(seee.g.,[31]).
ThecompactgeneratorsR3andL3ofthetwoSL(2,R)R,Lgroupsarediagonalandtheireigen-valuesare:R3=14πTR,(36)L3
=
1
4πTL
.
(37)
Notethatthenaturalvariablesofthegrouparethesumandthedifferenceofτandσ,ratherthanτandσthemselves.Theauxiliaryvariablesτandσarelocalized“times”closetoeachofthetwohorizons.Thus,inadefinitesense,itisthesumandthedifferenceofthetwohorizonsthataresingledoutbythegroupstructure.Thisresultissatisfyingbecauseitispreciselythesecombinationsofthesurfaceaccelerationsthatweassignmicroscopicsignificance.
Thewaveequationexhibitsanobvioussymme-trybetweeninnerandouterhorizontermsthatcanbeexpressedintermsofthegroupgenera-torsasanautomorphismofthealgebrathattakesR3→R3andL3→−L3.InstringtheorytheT-dualitysymmetryactsinpreciselythisway.Itisintriguingthatsymmetriesthatarecloselyassociatedwithstringtheoryarerealizedexplic-itlythroughthewaveequationinthegeneralblackholebackground.However,wemustem-phasizetheirprecisesignificanceremainsunclear.5.TheGreybodyFactors
Wenowconsiderthesolutionsofthewaveequationdiscussedinsec.4,following[6,26,29,13]Atlargexweconsidertheradialequationinflatspaceandweincludetheeffectsofthelongrangefieldsfromtheblackhole.ThesolutiontothisapproximateequationisaBesselfunc-tion.Nextweconsidertheequationwithonlytheunperturbedenergy1
8
sult1
dependsonthevalueofthepotentialterms
(eω/TH2
2T−1)(e
−ω
1)L
d4k
eω/TH−11
2
2TL
Itisimportanttonotethat−1)(thee
ω
(2π)4
Bosedistribu-tionwiththeHawkingtemperaturecanceledout.ThereforethefinalresultdependsonlyonthequantitiesTR,LandLthathavesignificanceintheeffectivestringdescription.Infactthereisanexplicitmicroscopicinterpretationofthisfor-mula:theemissionistheresultofatwo-bodypro-cess[2,5,6,13].TheBosedistributionsarephasespacefactorsoftheR–andL–movingquantapropagatingonthestring.Moreover,theampli-tudefortheannihilationoftwoquantacollidinghead-to-headonastringoflengthLcanbecal-culated,usingonlytheNambu-Gotoformofthestringaction.Theresultofthiscalculationisidenticaltoeq.(39).Thustheagreementbe-tweenthespace-timecalculationandthemicro-scopicinterpretationinvolvesthefunctionalde-pendenceontheenergy,andallnumericalfactorsagreeaswell.
Themicroscopictwo-bodyinterpretationoftheemissioncanbeemployedasamodelwhenevertheformofthesemi-classicalresultisofthetype(38).Asufficientconditionforthisisthelow
energyrequirementMω2rprobe+−ris−)ω2solarge≪1;thatthusthethe≪targetwave16.Thisimplies(22cannotlengthbeofpos-theitivelyidentifiedasablackhole.Ontheotherhand,theconditionalsoimpliesLω4presumablyimpliesthatthetargetcannot≪1.beThisun-ambiguouslyidentifiedasastringeither.
(i)Animportantspecialcaseisthedilutegaslimit[6],definedinsec.3asδ1,2thelow-energyconditionMω2frequenciesω∼TR∼TL.Therefore≪≫11.issatisfiedInthiscasethecalcu-forlationissensitivetotheBosedistributionfactorsineq.(39).Thisverifiesindetailthatthestringtemperatureshavebeencorrectlyidentifiedinthedilutegasregime.
(ii)Anotherinterestingexampleistheregimeofrapidlyspinningblackholes[13],whichisob-tainedbytuningthebareangularmomental1,2,
definedineq.(9),sothatl2=0andµ−l2
µǫ2
1=ergy≪conditionµ.Asinisthesatisfieddiluteforgasω∼case,TRthelowen-factorsaresignificant.However,∼nowTLsotheBosetherearenoconditionsontheboostsδi;sothefunc-tionaldependenceofthetemperaturesTL,RandthestringlengthLonallthreeboostsδiistestedindetail.
(iii)Asafinalexample,considerthelimitofverylowenergieswheretheuniversalabsorption
cross-sectionσ(0)
abs=A+isvalidforallblackholes.Thetwo-bodymodelstillapplies[33]butthetestaffordedbythecalculationoftheemissionratesisweakerbecauseitdoesnotinvolvethefunc-tionaldependenceonω.However,theagreementstillinvolvesthedependenceontheindependentblackholeparametersµ,δi,andl1,2.Thisresultthusprovidesevidencethat,atlowenergies,theeffectivestringmodelappliestoallblackholes.Matchingonnon-zeropotential:
Thetwo-bodyannihilationsconsideredsofararethesimplestdecayprocesses,butmorecom-plicatedonesgiveimportantadditionalinforma-tion.Recallthatoneoftheconditionsfortheva-lidityofthetwo-bodyformoftheemissionrateisthatthepotentialvanishesintheregionwherethe
asymptoticsolutionandthenearhorizonsolutionarematched.Thisconditioncanbereplacedwiththemilderassumptionthatthetwosolutionscanbematchedinaregionwherethepotentialisanyconstant[26,29,13].Inthiscasethefinalresultfortheemissionrateintothen-thpartialwavebecomes:
Γ(4π(n+1)22h−1
emn)
(ω)=×(40)
×Gh
TR
8π
ω2
d4k
(2πT)
2h−1e
−
ω
4πT
)|2
2
≡astheFouriertransform2)
has
aninterpretationofthecanonicallynormalizedthermalGreen’sfunctionsforaconformalfieldwiththescalingdimensionshR=hL=h[34]:
Gh
πTR
TR(z)=
9
2
+1
sothattheemissionvertexoperatorhasafreeconformalfieldtheoryrealizationoftheschematicform:
V∼:∂X(z)∂X¯(¯z)[Sa(z)]n[S¯a˙(¯z)]n:,
(43)
where::denotesthenormalorderingoftheoper-ators,Xarecoordinatesofthestringintheinter-naldirections,andSa,S¯a˙areworld-sheetfields
withconformaldimensions(hR,hL)=(1/2,0)and(hR,hL)=(0,1/2),respectively,andwhoseindices(a,a˙)specifyquantumnumbersofthespace-timespinors7.Theemissionisthere-foreinterpretedasamany-bodyprocessthatin-volves1bosonandnfermionsinbothR–andL–movingsectors.Lorentzinvarianceimpliesthatthecouplingofthisvertexoperatortotheout-goingfieldinvolvesnderivativesactingontheoutgoingfield.Thisgivesrisetoafactorofω2nintherateand,rememberingthenormalizationω−1oftheoutgoingwave,thecompletefrequencydependenceof(40)canbeaccountedforqualita-tively[29,35,36,14].Thus,forlargepartialwavenumbers,themicroscopicdescriptionintermsofaneffectivestringmodelaccountsfortheemis-sionratesinanarbitraryblackholebackground.Animportantunresolvedproblemremainsthecalculationoftheoverallnumericalcoefficientin(40).However,thisissueisnotspecifictothenon-extremecase.Itisexpectedthatthiscoef-ficientiscalculableintheBPS-limitandthatitagreeswiththeclassicalresult.Ifthisisborneoutitiswillalsobepossibletomodelthegeneralnon-extremeblackhole.
Thevertexoperators(43)arefermionicwhennisodd.Thereforethephase-spacefactorsas-sociatedwiththeinitialstateareexpectedtobe
10
oftheFermi-Diractype.InthiscasetheGreen’sfunctions(41)areproportionaltogammafunc-tionswithargumentswhoserealpartsarehalf-integral,whichindeedgivefactorsoftheFermi-Diracform(eω/2T+1)−1[29].Thisisaninter-estingexamplewheretheblackhole“looks”likeastringwithfermionicdegreesoffreedom.6.Conclusion
Weconcludebysummarizingtheaccomplish-mentsandtheshortcomingsoftheeffectivestringmodelfornon-extremeblackholes,startingwiththeformer:
•Theablesmodelintherelateseffectivethethermodynamic(weaklycoupled)vari-stringdescriptiondirectlytogeometricalfeaturesoftheblackholespace-time.•Theinagreementextremeandwithnear-extremethemodel.Thislimitsresultareprovidesastrongmotivationthatageneralnon-extremeblackholecanbemodeledbyaneffectivestringmodelaswell.
•Two-bodyquantitatively.processesSpecificallycanbethisaccountedresultgivesforamicroscopicinterpretationoftheuniversallow-energyabsorptioncross-section.•Many-bodyqualitatively.
processescanbeunderstoodDespitethesesuccessesitisappropriatetocon-cludewithsomecaution.Theunderstandingofnon-extremeblackholespresentedhereleavesmuchroomforimprovement:
•Thedamentaldetailedstringconnectiontheory,withalongawithspecificthefun-de-taileddescriptionoftheunderlyingSCFT,isnotclear.
•Thelimiteddescriptiontotheblackoftheholestringregimespectrumbecauseweisemployanapproximatenotionofaneffec-tivelevel.
•Currentoryarenotmodelssensitiveofblacktotheholesnontrivialinstringcausalthe-structureofblackholespace-times.
Itisnotclearwhethertheseobstaclescanbeover-comewithfurtherdevelopmentsoftheideasandtechniquesthatarepresentlyknown.
AcknowledgmentWewouldliketothankG.Gibbons,S.Gubser,G.Horowitz,S.Mathur,E.Verlinde,andH.Verlindefordiscussions.TheworkwassupportedbyDOEgrantDE-FG02-95ER403andNATOcollaborativegrantCGR949870(M.C.).WewouldliketothanktheAs-penCenterforPhysics(M.C.)andNORDITA(F.L.)forhospitalitywhilethemanuscriptwasbeingprepared.REFERENCES
1.A.StromingerandC.Vafa.Microscopicori-ginoftheBekenstein-Hawkingentropy.Phys.Lett.B,379:99–104,1996.hep-th/9601029.2.C.CallanandJ.Maldacena.D-braneap-proachtoblackholequantummechanics.Nucl.Phys.B,472:591–610,1996.hep-th/9602043.
3.G.T.HorowitzandA.Strominger.Count-ingstatesofnear-extremalblackholes.Phys.Rev.Lett,77:2369–2371,1996.hep-th/9602051.
4.A.Dhar,G.MandalandS.R.Wadia.Aob-sorptionvs.decayofblackholesinstringthe-oryandTsymmetry.Phys.Lett.B,388:51–59,1996.hep-th/9605234.
5.S.DasandS.Mathur.Comparingdecayrates
forblackholesandD-branes.Nucl.Phys.B,478:561–576,1996.hep-th/9606185.
6.J.MaldacenaandA.Strominger.Black
holegreybodyfactorsandD-branespec-troscopy.Phys.Rev.D,55:861–870,1996.hep-th/9609026.
7.M.DuffandJ.Rahmfeld.Massivestring
statesasextremeblackholes.Phys.Lett.B,345:441–447,1995.hep-th/9406105.
8.A.Sen.Extremalblackholesandelementary
stringstates.Mod.Phys.Lett.A,10:2081,1995.hep-th/9504147.
9.F.LarsenandF.Wilczek.Internalstructure
ofblackholes.Phys.Lett.B,375:37–42,1996.hep-th/95110.
10.M.CvetiˇcandA.Tseytlin.Solitonicstrings
andBPSsaturateddyonicblackholes.Phys.Rev.D,53:5619–5633,1996.hep-th/9512031.11.M.CvetiˇcandD.Youm.Entropyofnon-extremechargedrotatingblackholesinstring
theory.Phys.Rev.D,:2612–2620,1996.hep-th/9603147.
12.F.Larsen.Astringmodelofblackholemi-crostates.Phys.Rev.D,56:1005–1008,1997.hep-th/9702153.13.M.CvetiˇcandF.Larsen.Generalrotating
blackholesinstringtheory:Greybodyfactorsandeventhorizons.hep-th/9705192;tobepublishedinPhys.Rev.D.14.M.CvetiˇcandF.Larsen.Greybodyfac-torsforrotatingblackholesinfourdimen-sions.hep-th/9706071;tobepublishedin
Nucl.Phys.B.15.M.CvetiˇcandD.Youm.Generalrotat-ingfive-dimensionalblackholesoftoroidally
compactifiedheteroticstring.Nucl.Phys.B,476:118–132,1996.hep-th/9603100.16.M.CvetiˇcandC.Hull.BlackholesandU-duality.Nucl.Phys.B,480:296–316,1996.
hep-th/9606193.17.M.Cvetiˇc.Propertiesofblackholesin
toroidallycompactifiedstringtheory.Nucl.Phys.Proc.Suppl.,56B:1–10,1997.hep-th/9701152.18.M.CvetiˇcandI.Gaida.Dualityinvariant
nonextremeblackholesintoroidallycom-pactifiedstringtheory.hep-th/9703134;tobepublishedinNucl.Phys.B.
19.J.C.Breckenridge,R.C.Myers,A.W.Peet,
andC.Vafa.D-branesandspinningblackholes.Phys.Lett.B,391:93–98,1997.hep-th/9602065.
20.S.FerraraandR.Kallosh.Universalityof
supersymmetryattractors.Phys.Rev.D,:1525–1534,1996.hep-th/9603090.
21.S.DasandS.Mathur.ExcitationsofD-strings,entropyandduality.hep-th/9601152.22.J.MaldacenaandL.Susskind.D-branesand
fatblackholes.Nucl.Phys.B,475:679–690,1996.hep-th/9604042.
23.R.Dijkgraaf,G.Moore,E.Verlinde,and
H.Verlinde.Ellipticgeneraofsymmetricproductsandsecondquantizedstrings.Com-11
mun.Math.Phys.,185:197–209,1997.hep-th/9608096.
24.
G.T.Horowitz,D.A.Lowe,andJ.M.Mal-dacena.Statisticalentropyofnonextremalfour-dimensionalblackholesandU-duality.Phys.Rev.Lett.,77:430–433,1996.hep-th/9603195.
25.J.Maldacena.Statisticalentropyofnear-extremalfivebranes.Nucl.Phys.B,477:168–174,1996.hep-th/9605016.
26.I.R.KlebanovandS.Mathur.Blackholegreybodyfactorsandabsorptionofscalarsbyeffectivestrings.hep-th/9701187.
27.
T.Banks,W.Fischler,S.Shenker,andL.Susskind.Mtheoryasamatrixmodel:aconjecture.Phys.Rev.D,55:5112–5128,1997.hep-th/9610043.
28.D.KastorandJ.Traschen.Averyeffectivestringmodel?hep-th/9705090.
29.J.MaldacenaandA.Strominger.Universallowenergydynamicsforrotatingblackholes.hep-th/9702015.
30.
G.Gibbons,R.Rietdijk,andJ.vanHolten.SUSYinthesky.Nucl.Phys.B,404:42–,1993.hep-th/9303112;andreferencestherein.
31.
R.Dijkgraaf,E.Verlinde,andH.Verlinde.BPSspectrumofthefive-braneandblackholeentropy.Nucl.Phys.B,371:269–314,1992.
32.
S.Das,G.Gibbons,andS.Mathur.Univer-salityoflow-energyabsorptioncross-sectionsforblackholes.Phys.Rev.Lett.,78:417–419,1997.hep-th/9609052.
33.
E.Halyo,B.Kol,A.Rajaraman,andL.Susskind.CountingSchwarzschildandchargedblackholes.Phys.Lett.B,401:15–20,1997.hep-th/9609075.34.S.Gubser.Absorptionofphotonsandfermionsbyblackholesinfourdimensions.hep-th/9706100.
35.S.Mathur.Absorptionofangularmomen-tumbyblackholesandD-branes.hep-th/9704156.
36.
S.Gubser.Cantheeffectivestringseehigherpartialwaves?hep-th/9704195.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务