搜索
您的当前位置:首页正文

七年级不等式试题(试卷1)

来源:六九路网
七年级数学不等式测试题

一、填空题(每题2分,计30分)

1、已知a>b用”>”或”<”连接下列各式;

ab

(1)a-3 ---- b-3,(2)2a ----- 2b,(3)- ----- - (4)4a-3 ---- 4b-3 (5)a-b --- 0

332、已知a<0,a+b>0,用”>” 连接a、b、-a、-b各式:_____________________

x1x2,23、不等式组的整数解是_______________________

2x1x1234、已知不等式5(x-2)+8<6(x-1)+7的最小整数解是方程2x-ax=4的解,则a的值是_________。

5、如果关于x的不等式(a-1)xx57、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是 。

8、若关于x、y的方程组9、代数式

的解满足x+y>0,则m的取值范围是____。

1x2x的值不大于8的值,那么x的正整数解是 。

2410、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,

则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是 _______________。

11某商品的售价是150元,这种商品可获利润20%~50%,设这种商品的进价为x元,则x的取值范围是

12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折 13.若不等式组2xa1的解集为1x1,那么(a-1)(b-1)的值等于

x2b314. 满足不等式x-1≤3的自然数是_________.

15.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x+3>2成立的数有_________个.

二、(选择题 ,每题2分,计30分)

3x311、不等式组的最小整数解是( )A.0 B.1 C.2

x482x2、如果mn0,那么下列结论不正确的是( ) A. m9n9 B. mn C.

D.-1

11n D. 1 nmm1

1

3、在数轴上表示不等式组x>-2 的解,其中正确的是( )x1

4、某原料供应商对购买原料的顾客实行如下优惠办法:⑴一次购买不超过1万元,不予优惠;⑵一次购买超过1万元,但不超过3万元,给九折优惠;⑶一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂在该供应商处第一次购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为 ( )

A. 1460元 B. 1540元 C. 1560元 D. 2000元

5、关于x的不等式2x-a≤-1的解集如图所示,

则a的取值是( ) A.0 B.-3 C.-2 D.-1 6、若xyxy,yxy,那么下列式子中正确的是(

A、xy0 B、yx0 C、xy0 D、-y>0

7、设A 、B 、C 表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“ B ”、“C ”这三种物体按质量从大到小的顺序排应为

(A) A B C (B)C A B (C) B A C(D) B C A

8、6x556x,则x的取值范围是( )Ax

5 6Bx55 Cx 66 Dx5 69、如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( ) A 大于2千克 B 小于3千克 C 大于2千克且小于3千克 D 大.于2千克或小于3千克 .

1xm2m的解集为x2,则m 的值为( ) 331 A.4 B.2 C. D.

2210、不等式

11.若不等式(a5)x1的解集是x1,则a的取值范围是( ) a5 A. a5 B.a5 C. a5 D. 以上都不对 12.三个连续自然数的和不大于18,则符合要求的自然数有( )

A.3组 B.4组 C.5组 D.6组

2 2

13.一元一次不等式组xa的解集是xa,则a与b的关系为( ) xb A. ab B. ab C. ab0 D. ab0 14.若关于x的不等式组x2a0的解集是x2a,则a的取值范围是( )

2(x1)14x A.a4 B.a2 C. a2 D. a2 15.如果不等式组x73x7的解集是x>7,则n的取值范围是( )

xn A. n7 B. n7 C. n7 D. n7 二.解下列不等式组,并在数轴上表示解集。(每题6分,计12分)

7x23x2(x1)4x33(2x1)23 (3) (4)3 1x5x15x3x1222

三、解答题(每题8分,计16分)

2x13x11、求不等式组42的整数解。

x31x33

2、若方程组的解满足x<1且y>1,求k的整数解。

3(8分)、某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%。为了提高工人的劳动积极性,按时完成外贸订货任务,企业计划从六月份起进行工资改革。改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元。

(1)为了保证所有工人的每月工资收入不低于市有关部门规范的最低工资标准650元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元? (2)根据经营情况,企业决定每加工1套童装奖励5元。工人小张争取六月份工资不少于1200元,

3 3

问小张在六月份应至少加工多少套童装?

4(8分). 在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不低于60分,至少要答对多少道题目?

5(8分).将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,问有笼多少个?有鸡多少只?

6(8分). 某工厂现有甲种原料36千克,乙种原料20千克,计划用这两种原料生产A、B两种产品共12件,已知生产一件A中产品需甲种原料3千克,乙种原料1千克;生产一件B中产品需甲种原料2千克,乙种原料5千克。

(1)设生产x件A种产品,写出x应满足的不等式组; (2)请你设计出符合题意的几种生产方案。

4 4

一、4、解:设第二次购买金额为x元,则有0.9x=26 100,解得x=29 000.则两次应付金额为29 000+7800=36 800.

根据第三种优惠政策,则应付款为30 000×0.9+6 800×0.8=32 440.∴26100+7800-32440=1460,故少付1460元

3、工人每加工一套童装企业奖励x元150*60%=90 90x+200>=650 x>=5. 小张在六月份至少加工y套工装5y+200>=1200 5y>=1000 y>=200

4、解:设至少需要做对x道题(x为自然数)。4x -2×(25-x)≥60 4x-50+2x≥60 6x≥110 X≥19 答:至少需要做对19道题。

5、设有x个笼,一共有4x+1只鸡,则有不等式 0<4x+1-5(x-2)<3 4x+1<40 且x取整数,所以x=9 有9个笼,一共有鸡:4×9+1=37只

6、3X+2(12-X)≤36 12-x+5[12-(12-x)]≤20 解得:10≤x≤12

5

5

解得8

因篇幅问题不能全部显示,请点此查看更多更全内容

Top