您好,欢迎来到六九路网。
搜索
您的当前位置:首页多边形

多边形

来源:六九路网

  2.用多种正多边形拼地板

  教学目的

  通过两种以上的正多边形拼地板活动,使学生进一步体会某些平面图形的性质及其位置关系,促使学生在学习中培养良好的情感、态度、以及主动参与、合作、交流的意识,进一步提高观察、分析、概括、抽象等能力,同时使学习进一步认识图形在日常生活中的应用,能欣赏现实世界中的美丽图案。

  重点、难点

  1.重点:通过用两种以上正多边形拼地板,提高学生观察、分析、概括、抽象等能力。

  2.难点:寻找用哪几种正多边形能铺满地板。

  教学过程

  一、复习提问

  1.在正三角形、正方形、正五边形、正六边形、正八边形中,有哪几种可以用它们铺满地板?

  2.用正多边形瓷砖能不留空隙,不重叠地铺满地板的关键是什么?

  二、新授

  昨天我们已经学习了用一种正多边形拼地板,关键是看哪种正多边形的内角的度数是360°的约数。今天我们要探讨用两种拟上的正多边形拼地板。昨天已尝试了用正三角形和正六边形两种瓷砖拼地板,见教科书图9.3.3为什么能用正三角形,正六边形两种合在一起拼地板呢?

  因为正六边形的内角为120°,正三角形的内角为60°,这样用2块正六边形和2块正三角形,它们内角之和为一个周角360°,所以能铺满地板。

  能不能用其他两种或两种以上的正多边形铺地板呢?

  大家看教科书图9.3.4,它是用哪几种正多边形铺成的呢?为什么能拼成既没有空隙也没有重叠的平面图形?

  (用正十二边形和正三角形拼成的,因为正十二边形的内角为 150°,正三角形的内角为60°,那么2个正十二边形和一个正三角形各一个内角的和恰好等于一周角360°,所以可以铺满地板)

  图9.3.5是由哪几种正多边形拼成的呢?为什么能拼成?

  (用正十二边形、正六边形、正方形拼成的。因为正十二边形的内角为150°,正六边形的内角为120°,正方形的内角为90°,三者之和正好等于360°,所以可以铺满地板)

  观察图9.3.6是由哪几种正多边形拼成的呢?是否也满足这几个正多边形的一个内角之和为360°这个条件呢?

  (由正八边形和正方形拼成的,正八边形的内角为135°,正方形的内角为90°,那么2个正八边和一个正方形各一个内角之和正好等于 360°)

  观察图9.3.7,又是由哪些正多边形拼成的?是否满足几个正多边形的一个内角和等于 360°。是由正六边形、正方形、正三角形拼成的,如图所示:

  120°+90°+90°+60°=360°满足这几个正多边形的一个内角的和等于360°

  三、巩固练习

  1.你能用正三角形、正方形、正十二边形拼成不留空隙,不重叠的平面图形吗?

  2.教科书练习1、2。

  四、作业   

  教科书习题9.3. 1、2、3。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务