搜索
您的当前位置:首页正文

ucc28950

来源:六九路网
UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

GreenPhase-ShiftedFull-BridgeControllerWithSynchronousRectification

CheckforSamples:UCC28950

FEATURES

EnhancedWideRangeResonantZeroVoltageSwitching(ZVS)Capability

DirectSynchronousRectifier(SR)ControlLight-LoadEfficiencyManagementIncluding–BurstModeOperation

–DiscontinuousConductionMode(DCM),DynamicSROn/OffControlwithProgrammableThreshold

–ProgrammableAdaptiveDelay

AverageorPeakCurrentModeControlwithProgrammableSlopeCompensationandVoltageModeControl

ClosedLoopSoftStartandEnableFunctionProgrammableSwitchingFrequencyupto1MHzwithBi-DirectionalSynchronization(+/-3%)Cycle-by-CycleCurrentLimitProtectionwithHiccupModeSupport150-µAStart-UpCurrentVDDUnderVoltageLockout

WideTemperatureRange-40°Cto125°C

APPLICATIONS

•••••

Phase-ShiftedFull-BridgeConvertersServer,TelecomPowerSuppliesIndustrialPowerSystems

High-DensityPowerArchitecturesSolarInverters,andElectricVehicles

•••

DESCRIPTION

TheUCC28950enhancedphase-shiftedcontrollerbuildsuponTexasInstrument’sindustrystandardUCCx895phase-shiftedcontrollerfamilywithenhancementsthatofferbestinclassefficiencyintoday’shighperformancepowersystems.TheUCC28950implementsadvancedcontrolofthefull-bridgealongwithactivecontrolofthesynchronousrectifieroutputstage.

Theprimary-sidesignalsallowprogrammabledelaystoensureZVSoperationoverwide-loadcurrentandinputvoltagerange,whiletheloadcurrentnaturallytunesthesecondary-sidesynchronousrectifiersswitchingdelays,maximizingoverallsystemefficiency.

••••••

UCC28950TypicalApplication

+VS-CTCREFR1R212R3VSENSER6R4C3C2CSSENABLERABRCDREFRTVREFRSUMVREFRDCM(hi)RTMINC1R53456789UCC28950VREFEA+EA-COMPSS/ENDELABDELCDDELEFTMINGND24CVDDVDD23OUTA22OUTB21OUTC20OUTD19OUTE18OUTF17SYNC16CS15ADEL14ADELEF13RARCSRDCMRAEFVSENSEABCDEFSYNCRA(hi)UCC27324QEUCC27324QFBAVDDVDDQAQCVDDCVDDQBQDVDDDVOUT+

10RT11RSUM12DCMRAEF(hi)EF-

VoltageCurrentSenseR7Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsofTexasInstrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet.

PRODUCTIONDATAinformationiscurrentasofpublicationdate.ProductsconformtospecificationsperthetermsoftheTexasInstrumentsstandardwarranty.Productionprocessingdoesnotnecessarilyincludetestingofallparameters.

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

DESCRIPTION(CONT.)

TheUCC28950alsooffersmultiplelight-loadmanagementfeaturesincludingburstmodeanddynamicSRon/offcontrolwhentransitioninginandoutofDiscontinuousCurrentMode(DCM)operation,ensuringZVSoperationisextendeddowntomuchlighterloads.

Inaddition,theUCC28950includessupportforpeakcurrentalongwithvoltagemodecontrol,programmableswitchingfrequencyupto1MHzandawidesetofprotectionfeaturesincludingcycle-by-cyclecurrentlimit,UVLOandthermalshutdown.A90-degreephase-shiftedinterleavedsynchronizedoperationcanbeeasilyarrangedbetweentwoconverters.

TheUCC28950isavailableinTSSOP-24package.

ORDERINGINFORMATION

TEMPERATURERANGE,TA=

TJ

-40°Cto125°C

PACKAGE

Plastic24-pinTSSOP(PW)

TAPEANDREELQTY.

2502000

PARTNUMBERUCC28950PWUCC28950PWR

ABSOLUTEMAXIMUMRATINGS

overoperatingfree-airtemperaturerange(unlessotherwisenoted)

PARAMETER

Inputsupplyvoltagerange,VDD

(3)

(1)(2)

VALUE-0.4to20.0-0.4toVDD+0.4-0.4toVREF+

0.4-0.4to5.6

2k500

UNIT

OUTA,OUTB,OUTC,OUTD,OUTE,OUTF

InputsvoltagesonDELAB,DELCD,DELEF,SS/EN,DCM,TMIN,RT,SYNC,RSUM,EA+,EA-,COMP,CS,ADEL,ADELEFOutputvoltageonVREFESDrating,HBMESDrating,CDM

Continuoustotalpowerdissipation

Operatingvirtualjunctiontemperaturerange,TJOperatingambienttemperaturerange,TAStoragetemperature,Tstg

Leadtemperature(soldering,10sec.)(1)(2)(3)

V

Seedissipationratingtable-40to150-40to125-65to150300

°C

Stressesbeyondthoselistedunder“absolutemaximumratings”maycausepermanentdamagetothedevice.Thesearestressratingsonly,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunder“recommendedoperatingconditions”isnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability.Thesedevicesaresensitivetoelectrostaticdischarge;followproperdevicehandlingprocedures.

AllvoltagesarewithrespecttoGNDunlessotherwisenoted.Currentsarepositiveinto,negativeoutofthespecifiedterminal.SeePackagingSectionofthedatasheetforthermallimitationsandconsiderationsofpackages.

DISSIPATIONRATINGS(1)

PACKAGE

RqJC(°C/W)18.5

RqJA(°C/W)89.3

DERATINGFACTORABOVETA=

25°C11.2mW/°C

TA<25°C1.12W

POWERRATING

TA=70°C0.615W

TA=85°C0.448W

PW

(1)

ThesethermaldataaretakenatstandardJEDECtestconditionsandareusefulforthethermalperformancecomparisonofdifferentpackages.ThecoolingconditionandthermalimpedanceRqJAofpracticaldesignisspecific.

2SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

RECOMMENDEDOPERATINGCONDITIONS

overoperatingfree-airtemperaturerange(unlessotherwisenoted)

MIN

Supplyvoltagerange,VDD

Operatingjunctiontemperaturerange

Converterswitchingfrequencysettingrange,FSW(nom)

ProgrammabledelayrangebetweenOUTA,OUTBandOUTC,OUTDsetbyresistorsDELABandDELCDandparameterKA(1)

ProgrammabledelayrangebetweenOUTA,OUTFandOUTB,OUTEsetbyresistorDELEF,andparameterKEF(1)

ProgrammableDCMrangeaspercentageofvoltageatCS(1)ProgrammableTMINrange(1)

Verifiedduringcharacterizationonly.

8-405030305%100

TYP

12

MAX

1712510001000

ns

140030%800

nsUNITV°CkHz

ELECTRICALCHARACTERISTICS(1)

VDD=12V,TA=TJ=-40°Cto125°C,CVDD=1µF,CREF=1µF,RAB=22.6kΩ,RCD=22.6kΩ,REF=13.3kΩ,RSUM=124kΩ,RMIN=88.7kΩ,RT=59kΩconnectedbetweenRTpinand5-VvoltagesupplytosetFSW=100kHz(FOSC=200kHz)(unlessotherwisenoted).AllcomponentdesignationsarefromtheTypicalApplicationDiagram.

PARAMETER

UnderVoltageLockout(UVLO)UVLO_R

Startthreshold

THUVLO_FTH

Minimumoperatingvoltageafterstart

6.756.150.53

7.36.70.6

7.97.20.75

V

TESTCONDITION

MIN

TYP

MAX

UNITS

UVLO_H

Hysteresis

YST

SupplyCurrentsIDD(off)IDDVREFISCCFSW(nom)DMAX

Startupcurrent

OperatingsupplycurrentVREFtotaloutputrangeShortcircuitcurrentTotalrange

Maximumdutycycle

RT=59kΩbetweenRTandGND;Inputpulses200kHz,D=0.5atSYNC

RT=59kΩbetweenRTand5V;-40°C≤TJ≤125°C

0≤IR≤20mA;VDD=from8Vto17VVREF=0VVDDis5.2V

1505

4.925-5392

10095%5

270105.075-2310897%

µAmAVmAKHz

VREFOutputVoltage

SwitchingFrequency(½ofinternaloscillatorfrequencyFOSC)

SynchronizationPHSYNCFSYNCTPW(1)

TotalrangeTotalrangePulsewidth

TypicalvaluesforTA=25°C

851802.2

902002.5

952202.8

°PHkHzµs

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

3

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

ELECTRICALCHARACTERISTICS(1)(continued)

VDD=12V,TA=TJ=-40°Cto125°C,CVDD=1µF,CREF=1µF,RAB=22.6kΩ,RCD=22.6kΩ,REF=13.3kΩ,RSUM=124kΩ,RMIN=88.7kΩ,RT=59kΩconnectedbetweenRTpinand5-VvoltagesupplytosetFSW=100kHz(FOSC=200kHz)(unlessotherwisenoted).AllcomponentdesignationsarefromtheTypicalApplicationDiagram.

PARAMETER

ErrorAmplifierVICMVIOIBIASEAHIGHEALOWISOURCEISINKIVOLGBW

CommonmodeinputvoltagerangeOffsetvoltageInputbiascurrentHigh-leveloutputvoltageLow-leveloutputvoltageErroramplifiersourcecurrentErroramplifiersinkcurrentOpen-loopdcgainUnitygainbandwidth

(2)

TESTCONDITION

VICMrangeensuresparameters,thefunctionalityensuredfor3.6VMINTYPMAXUNITS

0.5-7-1

3.671

4.250.25

0.35-0.55.75

-3.754.61003

VmVµAVmAdBMHz

(EA+)-(EA-)=500mV,IEAOUT=-0.5mA(EA+)-(EA-)=-500mV,IEAOUT=0.5mA

3.9-82.7

Cycle-by-CycleCurrentLimitVCS_LIMTCS

CSpincycle-by-cyclethreshold

PropagationdelayfromCStoOUTCandOUTDoutputsDischargecurrenttosetcycle-by-cyclecurrentlimitduration

HiccupOFFTimethresholdDischargecurrenttosetHiccupModeOFFTimeChargecurrentShutdown/restart/resetthresholdPullupthresholdClampvoltage

VSS=0V

InputpulsebetweenCSandGNDfromzeroto2.5V

1.94

2100

2.06

Vns

InternalHiccupModeSettingsIDSVHCCIHCC

CS=2.5V,VSS=4V

153.21.90

203.62.55

254.23.2

µAVµA

SoftStart/EnableISSVSS_STDVSS_PUVSS_CL(2)

200.253.34.20

250.503.74.65

300.704.34.95

VµA

Verifiedduringcharacterizationonly.

4SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

ELECTRICALCHARACTERISTICS(1)(continued)

VDD=12V,TA=TJ=-40°Cto125°C,CVDD=1µF,CREF=1µF,RAB=22.6kΩ,RCD=22.6kΩ,REF=13.3kΩ,RSUM=124kΩ,RMIN=88.7kΩ,RT=59kΩconnectedbetweenRTpinand5-VvoltagesupplytosetFSW=100kHz(FOSC=200kHz)(unlessotherwisenoted).AllcomponentdesignationsarefromtheTypicalApplicationDiagram.

PARAMETER

ShortdelaytimesetaccuracybetweenOUTAandOUTBLongdelaytimesetaccuracybetweenOUTAandOUTBShortdelaytimesetaccuracybetweenOUTCandOUTDLongdelaytimesetaccuracybetweenOUTCandOUTDShortdelaytimesetaccuracybetweenfallingOUTA,OUTFLongdelaytimesetaccuracybetweenfallingOUTA,OUTFShortdelaytimesetaccuracybetweenfallingOUTB,OUTELongdelaytimesetaccuracybetweenfallingOUTB,OUTEPulsematchingbetweenOUTArise,OUTDfallandOUTBrise,OUTCfallHalfcyclematchingbetweenOUTArise,OUTBriseandOUTBrise,OUTArisePulsematchingbetweenOUTEfall,OUTEriseandOUTFfall,OUTFrisePulsematchingbetweenOUTEfall,OUTFriseandOUTFfall,OUTErise

TESTCONDITION

MIN

TYP

MAX

UNITS

ProgrammableDelayTimeSetAccuracyandRange(3)(4)(5)(6)(7)TABSET1TABSET2TCDSET1TCDSET2TAFSET1TAFSET2TBESET1TBESET2ΔTADBC

CS=ADEL=ADELEF=1.8VCS=ADEL=ADELEF=0.2VCS=ADEL=ADELEF=1.8VCS=ADEL=ADELEF=0.2VCS=ADEL=ADELEF=0.2VCS=ADEL=ADELEF=1.8VCS=ADEL=ADELEF=0.2VCS=ADEL=ADELEF=1.8V

CS=ADEL=ADELEF=1.8V,COMP=2V

32216322162219022190-50

452704527035240352400

5632556325482904829050

ns

ΔTABBA

CS=ADEL=ADELEF=1.8V,COMP=2V-50050

ΔTEEFF

CS=ADEL=ADELEF=0.2V,COMP=2V-60060

ΔTEFFE(3)(4)(5)(6)(7)

CS=ADEL=ADELEF=0.2V,COMP=2V-60060

SeeFigure3fortimingdiagramandTABSET1,TABSET2,TCDSET1,TCDSET2definitions.SeeFigure6fortimingdiagramandTAFSET1,TAFSET2,TBESET1,TBESET2definitions.PairofoutputsOUTC,OUTEandOUTD,OUTFalwaysgoinghighsimultaneously.OutputsAorBareneverallowedtogohighifbothoutputsOUTEandOUTFarehigh.Alldelaysettingsaremeasuredrelatively50%ofpulseamplitude.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

5

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

ELECTRICALCHARACTERISTICS(1)(continued)

VDD=12V,TA=TJ=-40°Cto125°C,CVDD=1µF,CREF=1µF,RAB=22.6kΩ,RCD=22.6kΩ,REF=13.3kΩ,RSUM=124kΩ,RMIN=88.7kΩ,RT=59kΩconnectedbetweenRTpinand5-VvoltagesupplytosetFSW=100kHz(FOSC=200kHz)(unlessotherwisenoted).AllcomponentdesignationsarefromtheTypicalApplicationDiagram.

PARAMETER

LightLoadEfficiencyCircuit

DCMthreshold,T=25°C

VDCM

DCMthreshold,T=0°Cto85°C(8)

DCMthreshold,T=-40°Cto125°C(8)

IDCM,SRCTMINISINK/SRCTRTFRSRCRSINK

DCMSourcingCurrentTotalrange

Sink/Sourcepeakcurrent(8)RisetimeFalltime

OutputsourceresistanceOutputsinkresistanceRisingthreshold(8)FallingthresholdHysteresis

(8)

Verifiedduringcharacterizationonly.

(8)

TESTCONDITION

VDCM=0.4V,SweepCSconfirmthereareOUTEandOUTFpulses

VDCM=0.4V,SweepCS,confirmthereareOUTEandOUTFpulses

VDCM=0.4V,SweepCS,confirmthereareOUTEandOUTFpulsesCSMINTYPMAXUNITS

0.370.3640.3514425

0.390.3900.39205250.2

0.410.4160.4326625

µAnsA

25253530

nsΩV

OUTPUTSOUTA,OUTB,OUTC,OUTD,OUTE,OUTF

CLOAD=100pFCLOAD=100pFIOUT=20mAIOUT=20mA

105

97201016014020

°C

THERMALSHUTDOWN

6SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

www.ti.com

ÓÉ Foxit Reader ±à¼-UCC28950°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£SLUSA16A–MARCH2010–REVISEDJULY2010 DEVICEINFORMATION

Plastic24-pinTSSOP(PW)UCC28950123456789VREFEA+EA-COMPSS/ENDELABDELCDDELEFTMINGND24VDD23OUTA22OUTB21OUTC20OUTD19OUTE18OUTF17SYNC16CS15ADEL14ADELEF1310RT11RSUM12DCMTERMINALFUNCTIONS

TERMINAL

NUMBER

123456789101112131415161718192021222324

NAMEVREFEA+EA-COMPSS/ENDELABDELCDDELEFTMINRTRSUMDCMADELEFADELCSSYNCOUTFOUTEOUTDOUTCOUTBOUTAVDDGND

I/OOIII/OIIIIIIIIIIII/OOOOOOOI

FUNCTION

5-V,±1.5%,20-mAreferencevoltageoutput.Erroramplifiernon-invertinginput.Erroramplifierinvertinginput.

ErroramplifieroutputandinputtothePWMcomparator.

Soft-startprogramming,deviceenableandhiccupmodeprotectioncircuit.Dead-timedelayprogrammingbetweenOUTAandOUTB.Dead-timedelayprogrammingbetweenOUTCandOUTD.

Delay-timeprogrammingbetweenOUTAtoOUTF,andOUTBtoOUTE.Minimumdutycycleprogramminginburstmode.Oscillatorfrequencyset.Masterorslavemodesetting.

Slopecompensationprogramming.Voltagemodeorpeakcurrentmodesetting.DCMthresholdsetting.Delay-timeprogrammingbetweenprimarysideandsecondarysideswitches,TAFSETandTBESET.Dead-timeprogrammingfortheprimaryswitchesoverCSvoltagerange,TABSETandTCDSET.Currentsenseforcycle-by-cycleover-currentprotectionandadaptivedelayfunctions.SynchronizationoutfromMastercontrollertoinputofslavecontroller.0.2-Asink/sourcesynchronousswitchingoutput.0.2-Asink/sourcesynchronousswitchingoutput.0.2-Asink/sourceprimaryswitchingoutput.0.2-Asink/sourceprimaryswitchingoutput.0.2-Asink/sourceprimaryswitchingoutput.0.2-Asink/sourceprimaryswitchingoutput.Biassupplyinput.

Ground.Allsignalsarereferencedtothisnode.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

7

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

FunctionalBlockDiagram

ADEL14VDDVDD23++7.3VRise-6.7VFallVREF

1ON/OFFVDDUVLOCOMPThermalShutdownENVDD22OUTA

ReferenceGeneratorProgrammableDelayAB6DELAB

5VLDO21OUTB

COMPEA-EA+

432PWMCOMP20OUTC

+++LogicBlockLower\"+\"InputisDominantRT10CLKProgrammableDelayCD7DELCD

19OUTD

OscillatorRAMP2.8V0.8V13ADELEF

RSUM11RampSummingCS+Cycle-by-CycleILIM18OUTE

CS15SynchronizationBlock2VProgrammableDelayEFSoftStatandEnablewith0.55VThreshold8DELEF

+-CSLight-LoadEfficiencyBlock17OUTF

16SYNC

24GND

12DCM

9TMIN

5SS/EN

TypicalApplicationDiagram

+VS-CTCREFR1R212R3VSENSER6R4C3C2CSSENABLERABRCDREFRTVREFRSUMVREFRDCM(hi)RTMINC1R53456789UCC28950VREFEA+EA-COMPSS/ENDELABDELCDDELEFTMINGND24CVDDVDD23OUTA22OUTB21OUTC20OUTD19OUTE18OUTF17SYNC16CS15ADEL14ADELEF13RARCSRDCMRAEFVSENSEABCDEFSYNCRA(hi)UCC27324QEUCC27324QFBAVDDVDDQAQCVDDCVDDQBQDVDDDVOUT+10RT11RSUM12DCMRAEF(hi)EF-VoltageCurrentSenseR78SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

StartupTimingDiagram

Nooutputdelayshown,COMP-to-RAMPoffsetnotincluded.

SS>0.5V,thenreleaseCOMP,DCM,CS,OutputsA,B,C,D,EandFVDD7.3-Vrise,6.7-VfallVDD_GOODVREFVREF_GOOD4.8-Vrise,4.6-VfallTMINCOMPRAMPPWMCLKTMINAdd0.85VoffsettoRAMPNoPWMpulsesshorterthanTMINexceptduringcycle-by-cyclecurrentlimitABCDEFigure1.UCC28950TimingDiagram

NOTE

ThereisnopulseonOUTEduringburstmodeatstartup.TwofallingedgePWMpulsesarerequiredbeforeenablingthesynchronousrectifieroutputs.

FBurstModeatthebeginningofstartupuntilPWM>TMINpulsesPWMTMIN2VP-PCopyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

9

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

SteadyState/ShutdownTimingDiagram

Nooutputdelayshown,COMP-to-RAMPoffsetnotincluded.

7.3V rise, 6.7V fallVDDVDD_GOOD4.8V rise, 4.6V fallVREFVREF_GOODCLKTMINAdd 0.85V offset to RAMPCOMP2Vp-pRAMPPWMNo PWM pulses shorter than TMIN exceptduring cycle-by-cycle current limitVDD failed and VDD_GOOD goes low,Everything is shutdownTMINABCDEFFigure2.UCC28950TimingDiagram

10SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

www.ti.com

ÓÉ Foxit Reader ±à¼-UCC28950°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£SLUSA16A–MARCH2010–REVISEDJULY2010 DETAILEDPINDESCRIPTIONANDPARAMETERSETTINGS

Start-UpProtectionLogic

BeforetheUCC28950controllerwillstartup,thefollowingconditionsmustbemet:

•VDDvoltageexceedsrisingUVLOthreshold7.3Vtypical.•The5-Vreferencevoltageisavailable.

•Junctiontemperatureisbelowthethermalshutdownthresholdof140°C.•Thevoltageonthesoft-startcapacitorisnotbelow0.55Vtypical.

Ifallthoseconditionsaremet,aninternalenablesignalENisgeneratedthatinitiatesthesoftstartprocess.ThedutycycleduringthesoftstartisdefinedbythevoltageattheSSpin,andcannotbelowerthanthedutycyclesetbyTMIN,orbycycle-by-cyclecurrentlimitcircuitdependingonloadconditions.VoltageReference(VREF)

Theaccurate(±1.5%)5-Vreferencevoltageregulatorwiththeshortcircuitprotectioncircuitsuppliesinternalcircuitryandprovidesupto20-mAexternaloutputcurrentforsettingDC/DCconverterparameters.PlacelowESRandESL,preferablyceramicdecouplingcapacitorCREFin1µFto2.2µFrangefromthispintoGNDasclosetotherelatedpinsaspossibleforbestperformance.Theonlyconditionwherethereferenceregulatorisshutdowninternallyisduringundervoltagelockout.

ErrorAmplifier(EA+,EA-,COMP)

Theerroramplifierhastwouncommittedinputs,EA+andEA-,witha3-MHzunitybandwidth,whichallowsflexibilityinclosingthefeedbackloop.TheEA+isanon-invertinginput,theEA-isaninvertinginputandtheCOMPistheoutputoftheerroramplifier.Theinputvoltagecommonmoderange,wheretheparametersoferroramplifierareguaranteed,isfrom0.5Vto3.6V.Theoutputoftheerroramplifierisconnectedinternallytothenon-invertinginputofthePWMcomparator.Therangeoftheerroramplifieroutputof0.25Vto4.25VfarexceedsthePWMcomparatorinputramp-signalrange,whichisfrom0.8Vto2.8V.Thesoft-startsignalservesasanadditionalnon-invertinginputoftheerroramplifier.Thelowerofthetwonon-invertinginputsoftheerroramplifieristhedominantinputandsetsthedutycyclewheretheoutputsignaloftheerroramplifieriscomparedwiththeinternalrampattheinputsofthePWMcomparator.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

11

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£www.ti.com SoftStartandEnable(SS/EN)

Thesoft-startpinSS/ENisamulti-functionpinusedforthefollowingoperations:

•ClosedloopsoftstartwiththegradualdutycycleincreasefromtheminimumsetbyTMINuptothesteadystatedutycyclerequiredbytheregulatedoutputvoltage.

•Settinghiccupmodeconditionsduringcycle-by-cycleovercurrentlimit.•On/offcontrolfortheconverter.

Duringsoftstart,oneofthevoltagesattheSS/ENorEA+pins,whicheverislower(SS/EN-0.55V)orEA+voltage(seeBlockDiagram),setsthereferencevoltageforaclosedfeedbackloop.BothSS/ENandEA+signalsarenon-invertinginputsoftheerroramplifierwiththeCOMPpinbeingitsoutput.ThusthesoftstartalwaysgoesundertheclosedfeedbackloopandthevoltageatCOMPpinsetsthedutycycle.ThedutycycledefinedbyCOMPvoltagecannotbeshorterthanTMINpulsesetbytheuser.However,iftheshortestdutycycleissetbythecycle-by-cyclecurrentlimitcircuit,thenitbecomesdominantoverthedutycycledefinedbyCOMPvoltageorbyTMINblock.

Thesoft-startdurationisdefinedbyanexternalcapacitorCSS,connectedbetweenSS/ENpinandground,andtheinternalchargecurrentthathastypicalvalueof25µA.Pullingthesoft-startpinexternallybelow0.55Vshutsdownthecontroller.Thereleaseofthesoft-startpinenablesthecontrollertostart,andifthereisnocurrentlimitcondition,thedutycycleappliedtotheoutputinductorgraduallyincreasesuntilitreachesthesteadystatedutycycledefinedbytheregulatedoutputvoltageoftheconverter.ThishappenswhenthevoltageattheSS/ENpinreachesandthenexceedsthevoltageatEA+pindefinedasVNIby0.55V.Thusforthegivensoft-starttimeTSS,theCSSvaluecanbedefinedbyEquation1orEquation2:

CSS(master)=CSS(slave)=

TSS´25mA(VNI+0.55)TSS

(1)

20.6æö

825K´Lnç÷

è20.6-VNI-0.55ø

(2)

Forexample,inEquation1,ifthesoft-starttimeTSSisselectedtobe10ms,andtheVNIis2.5V,thenthesoft-startcapacitorCSSisequalto82-nF.

NOTE

IftheconverterisconfiguredinSlaveMode,makesureyouplacean825-kΩresistorfromSSpintoground.

Light-LoadPowerSavingMode

TheUCD28950offersfourdifferentlight-loadmanagementtechniquesforimprovingtheefficiencyofapowerconverteroverawideloadcurrentrange.1.AdaptiveDelay,

(a)ADEL,whichsetsandoptimizesthedead-timecontrolfortheprimaryswitchesoverwideloadcurrent

range.

(b)ADELEF,whichsetsandoptimizesthedelay-timecontrolbetweentheprimarysideswitchesandthe

secondarysideswitches.

2.TMIN,setstheminimumdutycycleaslongasthepartisnotincurrentlimitmode.

3.Dynamicsynchronousrectifieron/offcontrolinDCMMode,Forincreasedefficiencyatlightloads.TheDCMModestartswhenthevoltageatCSpinislowerthanthethresholdsetbytheuser.InDCMMode,thesynchronousoutputdrivesignalsOUTEandOUTFarebroughtdownlow.

4.BurstMode,formaximumefficiencyatverylightloadsornoload.BurstModehasanevennumberofPWMTMINpulsesfollowedbyofftime.TransitiontotheBurstModeisdefinedbytheTMINdurationsetbytheuser.

12SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

AdaptiveDelay,(DelaybetweenOUTAandOUTB,OUTCandOUTD(DELAB,DELCD,ADEL))

TheresistorRABfromtheDELABpin,DELABtoGND,alongwiththeresistordividerRAHIfromCSpintoADELpinandRAfromADELpintoGNDsetsthedelayTABSETbetweenoneofoutputsOUTAorOUTBgoinglowandanotheroutputgoinghighFigure3.

TABSET2TCDSET2TABSET2TCDSET2OUTA(OUTC)OUTB(OUTD)TABSET1TCDSET1TABSET1TCDSET1Figure3.DelaydefinitionsbetweenOUTAandOUTB,OUTCandOUTD

ThisdelaygraduallyincreasesasafunctionoftheCSsignalfromTABSET1,whichismeasuredatVCS=1.8V,toTABSET2,whichismeasuredattheVCS=0.2V.Thisapproachensurestherewillbenoshoot-throughcurrentduringthehigh-sideandlow-sideMOSFETswitchingandoptimizesthedelayforZVSconditionoverawideloadcurrentrange.DependingontheresistordividerRAHIandRA,theproportionalratiobetweenlongestandshortestdelayisset.ThemaxratioisachievedbytyingtheCSandADELpinstogether.IfADELisconnectedtoGND,thenthedelayisfixed,definedonlybytheresistorRABfromDELABtoGND.ThedelayTCDSET1andTCDSET2settingsandtheirbehaviourforoutputsOUTCandOUTDareverysimilartotheonedescribedforOUTAandOUTB.ThedifferenceisthatresistorRCDconnectedbetweenDELCDpinandGNDsetsthedelayTCDSET.DelaysforoutputsOUTCandOUTDsharewiththeoutputsOUTAandOUTBthesameCSvoltagedependencepinADEL.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

13

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£www.ti.com ThedelaytimeTABSETisdefinedbythefollowingEquation3.

æö5´RAB

TABSET=ç÷ns+5ns

è0.15V+CS´KA´1.46ø

ThesameequationisusedtodefinethedelaytimeTCDSETinanotherlegexceptRABisreplacedbyRCD.

(3)

æö5´RCD

TCDSET=ç÷ns+5ns

è0.15V+CS´KA´1.46ø

(4)

IntheseequationsRABandRCDareinkΩandCS,thevoltageatpinCS,isinvoltsandKAisanumericalcoefficientintherangefrom0to1.ThedelaytimeTABSETandTCDSETareinns.Theseequationsareempiricalandtheyareapproximatedfrommeasureddata.Thus,thereisnounitagreementintheequations.Asanexample,assumeRAB=15kΩ,CS=1VandKA=0.5.ThentheTABSETisgoingtobe90.25ns.InbothEquation3andEquation4,KAisthesameandisdefinedas:

KA=

RA

RA+RAHI

(5)

KAsetshowthedelayissensitivetoCSvoltagevariation.IfKA=0(ADELshortedtoGND),thedelayisfixed.IfKA=1(ADEListiedtoCS),thedelayismaximumatCS=0.2VandgraduallydecreaseswhenCSgoesupto1.8V.Theratiobetweenthemaximumandminimumdelaycanbeupto6:1.

ItisrecommendedtostartbysettingKA=0andsetTABSETandTCDSETrelativelylargeusingequationsorplotsinthedatasheettoavoidhardswitchingorevenshootthroughcurrent.ThedelaybetweenoutputsA,BandC,DsetbyresistorsRABandRCSaccordingly.Programtheoptimaldelaysatlightloadfirst.ThenbychangingKAsettheoptimaldelayfortheoutputsA,Batmaximumcurrent.KAforoutputsC,DisthesameasforA,D.UsuallyoutputsC,DalwayshaveZVSifsufficientdelayisprovided.NOTE

TheallowedresistorrangeonDELABandDELCD,RABandRCDare13kΩto90kΩ.

14SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

RAandRAHIdefinetheportionofvoltageatpinCSappliedtothepinADEL(SeeTypicalApplicationDiagram).KAdefineshowsignificantlythedelaytimedependsonCSvoltage.Kavariesfrom0,whereADELpinisshortedtoground(RA=0)andthedelaydoesnotdependonCSvoltage,to1,whereADEListiedtoCS(RAH=0).SettingKA,RABandRCDprovidestheabilitytomaintainoptimalZVSconditionsofprimaryswitchesoverloadcurrentbecausethevoltageatCSpinincludesreflectedloadcurrenttoprimarysidethroughthecurrentsensingcircuit.TheplotsinFigure4andFigure5showthedelaytimesettingsasafunctionofCSvoltageandKAfortwodifferentconditions:RAB=RCD=13kΩ(Figure4)andRAB=RCD=90kΩ(Figure5).

TIMEDELAY(RAB=RCD=13kW)

vs

CSVOLTAGE

350300TABSET,TCDSET-TimeDelay-ns250200

KA=0.0KA=0.1KA=0.25KA=0.50KA=0.75KA=1.0

15010050

5

0.0

0.2

0.4

0.6

0.8

1.01.2

1.4

1.6

1.82.0

CSVoltage-V

Figure4.DelayTimeSetTABSETandTCDSET

(OverCSvoltagevariationandselectedKAforRABandRCDequal13kΩ)

TIMEDELAY(RAB=RCD=90kW)

vs

CSVOLTAGE

20001800TABSET,TCDSET-TimeDelay-ns16001400120010008006004002000

0.0

0.2

0.4

0.6

0.8

1.01.2

1.4

1.6

1.82.0

CSVoltage-V

KA=0.0KA=0.1KA=0.25KA=0.50KA=0.75KA=1.0

Figure5.DelaytimesetTABSETandTCDSET

(OverCSvoltagevariationandselectedKAforRABandRCDequal90kΩ)

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

15

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

AdaptiveDelay(DelaybetweenOUTAandOUTF,OUTBandOUTE(DELEF,ADELEF))

TheresistorREFfromtheDELEFpintoGNDalongwiththeresistordividerRAEFHIfromCSpintoADELEFpinandRAEFfromADELEFpintoGNDsetsequaldelaysTAFSETandTBESETbetweenoutputsOUTAorOUTBgoinglowandrelatedoutputOUTForOUTEgoinglowFigure6.

OUTA(OUTB)OUTD(OUTC)TAFSET1TBESET1OUTF(OUTE)TAFSET2TBESET2Figure6.DelayDefinitionsBetweenOUTAandOUTF,OUTBandOUTE

ThesedelaysgraduallyincreaseasfunctionofCSsignalfromTAFSET1,whichismeasuredatVCS=0.2V,toTAFSET2,whichismeasuredatVCS=1.8V.OppositetotheDELABandDELCDbehaviour,thisdelayislongest(TAFSET2)whenthesignalatCSpinismaximizedandshortest(TAFSET1)whentheCSsignalisminimized.ThisapproachwillreducethesynchronousrectifierMOSFETbodydiodeconductiontimeoverawideloadcurrentrangethusimprovingefficiencyandreducingdioderecoverytime.DependingontheresistordividerRAEFHIandRAEF,theproportionalratiobetweenlongestandshortestdelayisset.IfCSandADELEFaretied,theratioismaximized.IfADELEFisconnectedtoGND,thenthedelayisfixed,definedonlybyresistorREFfromDELEFtoGND.

ThedelaytimeTAFSETisdefinedbythefollowingEquation6.ThesamedefinesthedelaytimeTBESET.

ææöö5´REF

+TAFSET=ççns4ns÷ç2.65V-CS´K´1.32÷÷

EFøèèø

(6)

InthisequationREFisinkΩ,theCS,whichisthevoltageatpinCS,isinvoltsandKEFisanumericalgainfactor

ofCSvoltagefrom0to1.ThedelaytimeTAFSETisinns.Thisequationisempiricalapproximationofmeasureddata,thus,thereisnounitagreementinit.Asanexampleofcalculation,assumeREF=15kΩ,CS=1VandKEF=0.5.ThentheTAFSETisgoingtobe41.7ns.KEFisdefinedas:

KEF=

RAEF

RAEF+RAEF(hi)

(7)

RAEFandRAEFHIdefinetheportionofvoltageatpinCSappliedtothepinADELEF(SeeTypicalApplicationDiagram).KEFdefineshowsignificantlythedelaytimedependsonCSvoltage.KEFvariesfrom0,whereADELEFpinisshortedtoground(RAEF=0)andthedelaydoesnotdependonCSvoltage,to1,whereADELEFistiedtoCS(RAEFHI=0).

NOTE

TheallowedresistorrangeonDELEF,REFis13kΩto90kΩ.

16SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

TheplotsinFigure7andFigure8showdelaytimesettingsasfunctionofCSvoltageandKEFfortwodifferentconditions:REF=13kΩ(Figure7)andREF=90kΩ(Figure8)

TIMEDELAY(TEF=REF=13kW)

vs

CSVOLTAGE

350300TAFSET,TBESET-TimeDelay-ns250200

KA=0.00KA=0.25KA=0.50KA=0.75KA=0.90KA=1.00

15010050

5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CSVoltage-V

Figure7.DelayTimeTAFSETandTBESET

(OverCSvoltageandselectedKEFforREFequal13kΩ)

TIMEDELAY(TAF=RBE=90kW)

vs

CSVOLTAGE

20001800TAFSET,TBESET-TimeDelay-ns16001400120010008006004002005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CSVoltage-V

KA=0.0KA=0.4KA=0.5KA=0.8KA=0.9KA=1.0

Figure8.DelayTimeTAFSETandTBESET

(OverCSvoltageandselectedKEFforREFequal90kΩ)

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

17

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

MinimumPulse(TMIN)

TheresistorRTMINfromTMINpintoGNDsetsfixedminimumpulseTMINappliedtotheoutputrectifierenablingZVSoftheprimaryswitchesatlightload.IftheoutputPWMpulsedemandedbythefeedbackloopisshorterthanTMIN,thencontrollerproceedstotheburstmodeofoperationwhereevennumberofTMINpulsesarefollowedbytheofftimedictatedbythefeedbackloop.TheproperselectionofTMINdurationisdictatedbythetimeittakestoraisethesufficientmagnetizingcurrentinthepowertransformertomaintainZVS.TheminimumpulseTMINisdefinedbythefollowingEquation8.

TMIN=(5.92´RTMIN)ns

InthisequationRTMINisinkΩandTMINisinns.

NOTE

TheminimumallowedresistoronTMIN,RTMINis13kΩ.

TherelatedplotisshowninFigure9

MINIMUMTIME

vs

RESISTORSETTING

900800700TMIN-MinimumTime-ns(8)

6005004003002001000

5

152535455565758595105115125

RTMIN-ResistorSetting-kW

Figure9.MinimumTimeTMINOverSettingResistorRTMIN

ThevalueofminimumdutycycleDMINisdeterminedbyEquation9.

DMIN=TMIN´FSW(osc)´10-4%

Here,FSW(osc)isoscillatorfrequencyinkHz,TMINistheminimumpulseinnsandDMINisinpercents.

()

(9)

BurstMode

IftheconverteriscommandingadutycyclelowerthanTMIN,thenthecontrollerwillgointoBurstMode.ThecontrollerwillalwaysdeliverevennumberofPowercyclestoPowertransformer.ThecontrolleralwaysstopsitsburstswithOUTBandOUTCpowerdeliverycycle.IfthecontrollerisstilldemandingadutycyclelessthanTMIN,thenthecontrollergoesintoshutdownmode.ThenitwaitsuntiltheconverterisdemandingadutycycleequalorhigherthanTMINbeforethecontrollerputsoutTMINoraPWMdutycycleasdictatedbyCOMPvoltagepin.

18SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

SwitchingFrequencySetting(RT)

ConnectinganexternalresistorRTbetweentheRTpinandVREFpinssetsthefixedfrequencyoperationandconfiguresthecontrollerasamasterprovidingsynchronizationoutputpulsesatSYNCpinwith0.5dutycycleandfrequencyequaltotheinternaloscillator.TosettheconverterinSlaveMode,connecttheexternalresistorRTbetweenRT-pintoGNDandplacean825-kΩresistorformSSpintoGNDinparalleltotheSS_ENcapacitor.Thisconfiguresthecontrollerasaslave.Theslavecontrolleroperateswith90°phaseshiftrelativelytothemasterconverteriftheirSYNCpinsaretiedtogether.Theswitchingfrequencyoftheconverterisequaltothefrequencyofoutputpulses.ThefollowingEquation10definesthenominalswitchingfrequencyoftheconverterconfiguredasamaster(resistorRTbetweenRT-pinandVREF).OntheUCC28950thereisaninternalclockoscillatorfrequencywhichistwiceasthatofthecontrolleroutputsfrequency.

FSW(nom)

æöç÷3

2.5´10÷kHz=ç

çæRTkWö÷çççV-2.5V+1´V÷÷÷

øøèèREF

(10)

InthisequationtheRTisinkΩ,VREFisinvoltsandFSW(nom)isinkHz.Thisisalsoempiricalapproximationand

thus,thereisnounitagreement.Assumeforexample,VREF=5V,RT=65kΩ.ThentheswitchingfrequencyFSW(nom)isgoingtobe92.6kHz.

TheEquation11definesthenominalswitchingfrequencyofconverteriftheconverterconfiguredasaslaveandtheresistorRTisconnectedbetweenRTpinandGND.

FSW(nom)

æöç÷3

2.510´÷kHz=ç

çæRTkWö÷

1+´çç÷÷2.5VVèøøè

(11)

InthisequationtheRTisinkΩ,andFSW(nom)isinkHz.NoticethatforVREF=5V,Equation10andEquation11

yieldthesameresults.

TheplotinFigure10showshowFSW(nom)dependsontheresistorRTvaluewhentheVREF=5V.AsitisseenfromEquation10andEquation11,theswitchingfrequencyFSW(nom)issettothesamevalueforeithermaster,ofslaveconfigurationprovidedthesameresistorvalueRTisused.

SWITCHINGFREQUENCY

vs

RESISTORRTVALUE

1000900FSW(nom)-SwitchingFrequency-kHz8007006005004003002001000

5

152535455565758595105115125

RT-Resistor-kW

Figure10.ConverterSwitchingFrequencyFSW(nom)OverResistorRTValue

Copyright©2010,TexasInstrumentsIncorporated

SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

19

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£www.ti.com SlopeCompensation(RSUM)

SlopecompensationisthetechniquethataddsadditionalrampsignaltotheCSsignalandappliedtothe:

•InputofPWMcomparatorincaseofpeakcurrentmodecontrol.•Inputofcycle-by-cyclecurrentlimitcomparator.

Thispreventssub-harmonicoscillationatD>50%(somepublicationssuggestitmighthappenevenatD<50%).Atlowdutycycleandlightload,theslopecompensationrampreducesnoisesensitivityofPeakCurrentModecontrol.

ToomuchadditionalslopecompensationrampreducesbenefitsofPCMcontrol.Incaseofcycle-by-cyclecurrentlimit,theaveragecurrentlimitbecomeslowerandthismightreducethestartupcapabilitywiththelargeoutputcapacitance.Theoptimalcompensationslopevariesdependingondutycycle,LOandLM.Theslopecompensationisneededforthecontrolleroperatingatpeakcurrentmodecontrolorduringthecycle-by-cyclecurrentlimitatdutycycleabove50%.PlacingaresistorfromRSUMpintogroundallowsthecontrollertooperateinpeakcurrentcontrolmode.ConnectingRSUMpinthroughresistortoVREFswitchescontrollertothevoltagemodecontrolwiththeinternalPWMramp.However,theresistorvaluestillprovidesCSsignalcompensationforcycle-by-cyclecurrentlimit.Inotherwords,inVMC,theslopecompensationisappliedonlytocycle-by-cyclecomparator.WhileinPCM,theslopecompensationappliedtobothPWMandcycle-by-cyclecurrentlimitcomparators.

TheoperationlogicofslopecompensationcircuitisshowninFigure11.COMP4++OscillatorVREF VCMCLKPCM0.85 VRampGeneratorRAMPRSUM11VMCTwo DirectionCurrent SenseRampSummingCycle-by-Cycle ILIMCS_SLOPECOMP+2 V+-CS15Mode SelectGND PCM7GND

Figure11.TheOperationLogicofSlopeCompensationCircuit

Theslopeoftheadditionalramp,me,addedtoCSsignalbyplacingaresistorfromRSUMpintothegroundisdefinedbythefollowingEquation12.

æöV2.5me=ç÷

´0.5RSUMømsè

(12)

20SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

IftheresistorfromRSUMpinisconnectedtoVREFpin,thenthecontrolleroperatesinvoltagemodecontrol,stillhavingtheslopecompensationaddedtoCSsignalusedforcycle-by-cyclecurrentlimit.InsuchacasetheslopeisdefinedbythefollowingEquation13.

æ(VREF-2.5V)öVme=ç÷

è0.5´RSUMøms

(13)

InEquation12andEquation13,theVREFisinvolts,RSUMisinkΩ,andmeisinV/µs.Theseareempiricalequationswithoutunitagreement.Asanexample,substitutingVREF=5VandRSUM=40kΩ,yieldstheresult0.125V/µs.TherelatedplotofmeasfunctionofRSUMisshowninFigure12.BecauseVREF=5V,theplotsgeneratedfromEquation12andEquation13coincide.

SLOPEvs

RESISTOR

0.500.450.400.35Slope-V/ms0.300.250.200.150.100.050

5

20

40

60

80

100120140160180200

Rsum-Resistor-kW

Figure12.SlopeoftheAddedRampOverResistorRSUM

NOTE

TherecommendedresistorrangeforRSUMis10kΩto1MΩ.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

21

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

DynamicSRON/OFFControl(DCMMode)

ThevoltageattheDCMpinprovidedbytheresistordividerRdcmhibetweenVREFpinandDCM,andRdcmfromDCMpintoGND,setsthepercentageof2-VcurrentlimitthresholdfortheCurrentSensepin,(CS).IftheCSpinvoltagefallsbelowtheDCMpinthresholdvoltage,thenthecontrollerinitiatesthelightloadpowersavingmode,andshutsdownthesynchronousrectifiers,OUTEandOUTF.IftheCSpinvoltageishigherthantheDCMpinthresholdvoltage,thenthecontrollerrunsinCCMmode.ConnectingtheDCMpintoVREFmakesthecontrollerruninDCMmodeandshutsbothOutputsOUTEandOUTF.ShortingtheDCMpintoGNDdisablestheDCMfeatureandthecontrollerrunsinCCMmodeunderallconditions.

VREF120mARDCM(hi)CSR = 77 kW15R = 77 kW12C = 6.5 pFDCM_COMP+PWM2-CycleCounter0 = DCM1 = CCMDCMRDCMC = 6.5 pFOther BlocksFigure13.DCMFunctionalBlock

MovingintoDCMMode0.8DUTYCYCLEvsLOADCURRENTVS(max)0.6DutyCycle-%VS(min)0.4SettingDMIN15.6%BurstModeArea0.200

1

2

3

4

5

6

7

8

9

10

LoadCurrent-A

Figure14.DutyCycleChangeOverLoadCurrentChange

22SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

Thereisanominal20-µAswitchedcurrentsourceusedtocreatehysteresis.ThecurrentsourceisactiveonlywhenthesystemisinDCMMode.Otherwise,itisinactiveanddoesnotaffectthenodevoltage.Therefore,whenbeinginDCMregion,theDCMthresholdisthevoltagedividerplusΔVexplainedinEquation14below.WhenbeinginCCMregion,thethresholdisthevoltagesetbytheresistordivider.WhenCSpinreachesthethresholdsetontheDCMpin,thesystemwaitstoseetwoconsecutivefallingedgePWMcyclesbeforeswitchingfromCCMtoDCMandvice-versa.Themagnitudeofthehysteresisisafunctionoftheexternalresistordividerimpedance.ThehysteresiscanbecalculatedusingthefollowingEquation14:

DV=2´10-5

RDCMHI´RDCMRDCMHI+RDCM

(14)

PWM

DCMThreshold+Hysteresis

CSEF

Figure15.MovingfromDCMtoCCMMode

PWM

DCMThreshold+Hysteresis

CSEF

Figure16.MovingfromCCMtoDCMMode

DCMmustbeusedinordertopreventreversecurrentintheoutputinductorwhichcouldcausethesynchronousFETStofail.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

23

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

CurrentSensing(CS)

Thesignalfromcurrentsensepinisusedforcycle-by-cyclecurrentlimit,peak-currentmodecontrol,light-loadefficiencymanagementandsettingthedelaytimeforoutputsOUTA,OUTB,OUTC,OUTDanddelaytimeforoutputsOUTE,OUTF.ConnectthecurrentsenseresistorRCSbetweenCSandGND.Dependingonlayout,topreventapotentialelectricalnoiseinterference,itisrecommendedtoputasmallR-CfilterbetweenRCSresistorandCSpin.

Cycle-by-CycleCurrentLimitCurrentProtectionandHiccupMode

Thecycle-by-cyclecurrentlimitprovidespeakcurrentlimitingontheprimarysideoftheconverterwhentheloadcurrentexceedsitspredeterminedthreshold.Forpeakcurrentmodecontrol,certainleadingedgeblankingtimeisneededtopreventthecontrollerfromfalsetrippingduetoswitchingnoise.InordertosaveexternalRCfilterfortheblankingtime,aninternal30-nsfilteratCSinputisprovided.ThetotalpropagationdelayTCSfromCSpintooutputsis100ns.AnexternalRCfilterisstillneededifthepowerstagerequiresmoreblankingtime.The2.0-V±3%cycle-by-cyclecurrentlimitthresholdisoptimizedforefficientcurrenttransformerbasedsensing.Thedurationwhenaconverteroperatesatcycle-by-cyclecurrentlimitdependsonthevalueofsoft-startcapacitorandhowseveretheovercurrentconditionis.ThisisachievedbytheinternaldischargecurrentIDSEquation15andEquation16atSSpin.

IDS(master)=(-25´(1-D)+5)mAIDS(slave)=(-25´(1-D))mA

(15)(16)

Thesoft-startcapacitorvaluealsodeterminesthesocalledhiccupmodeoff-timeduration.Thebehavioroftheconverterduringdifferentmodesofoperation,alongwithrelatedsoftstartcapacitorcharge/dischargecurrentsareshowninFigure17.

SSPin(V)SSClampVoltagePullUpThreshold

4.653.703.60SoftStartCycle-by-CycleILIMNormal.OperationOFFTimeBeforeRestart25mASoftRestartFastPullUpby1kWSwitchIDS=(-25x(1-D)+5)mAOutputEnable

Threshold

0.550.00ISS=25mAIHCC=2.5mAOutputPulses(D)

Figure17.TimingDiagramofSoft-StartVoltageVSS

24SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

Thelargestdischargecurrentof20µAiswhenthedutycycleisclosetozero.Thiscurrentsetstheshortestoperationtimeduringthecycle-by-cyclecurrentlimitwhichisdefinedas:

TCL(on_master)=TCL(on_slave)=

CSS´(4.65V-3.7V)

20mA25mA

(17)

CSS´(4.65V-3.7V)

(18)

Thus,ifthesoft-startcapacitorCSS=100nFisselected,thentheTCL(on)timewillbe5ms.

TocalculatethehiccupofftimeTCL(off)beforetherestart,thefollowingEquation19orEquation20needstobeused:

TCL(off_master)=

CSS´(3.6V-0.55V)

2.5mA

(19)

TCL(off_slave)=

CSS´(3.6V-0.55V)

4.9mA

(20)

Withthesamesoftstartcapacitorvalue100nF,theofftimebeforetherestartisgoingtobe122ms.Notice,thatiftheovercurrentconditionhappensbeforethesoftstartcapacitorvoltagereachesthe3.7-Vthresholdduringstartup,thecontrollerlimitsthecurrentbutthesoftstartcapacitorcontinuestobecharged.Assoonasthe3.7-Vthresholdisreached,thesoft-startvoltageisquicklypulleduptothe4.65-Vthresholdbyaninternal1-kΩRDS(on)switchandthecycle-by-cyclecurrentlimitdurationtimingstartsbydischargingthesoftstartcapacitor.Dependingonspecificdesignrequirements,theusercanoverridedefaultparametersbyapplyingexternalchargeordischargecurrentstothesoftstartcapacitor.Thewholecycle-by-cyclecurrentlimitandhiccupoperationisshowninFigure17.Inthisexamplethecycle-by-cyclecurrentlimitlastsabout5msfollowedby122msofofftime.

Similartotheovercurrentcondition,thehiccupmodewiththerestartcanbeoverriddenbytheuserifapullupresistorisconnectedbetweentheSSandVREFpins.Ifthepullupcurrentprovidedbytheresistorexceeds2.5µA,thenthecontrollerremainsinthelatchoffmode.Inthiscase,anexternalsoft-startcapacitorvalueshouldbecalculatedwiththeadditionalpull-upcurrenttakenintoaccount.Thelatchoffmodecanberesetexternallyifthesoft-startcapacitorisforciblydischargedbelow0.55VortheVDDvoltageisloweredbelowtheUVLOthreshold.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

25

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

Synchronization(SYNC)

TheUCC28950allowsflexibleconfigurationofconvertersoperatinginsynchronizedmodebyconnectingallSYNCpinstogetherandbyconfigurationofthecontrollersasmasterand/orslaves.ThecontrollerconfiguredasMaster(resistorbetweenRTandVREF)providessynchronizationpulsesattheSYNCpinwiththefrequencyequalto2XtheconverterfrequencyFSW(nom)and0.5dutycycle.ThecontrollerconfiguredasaSlave(resistorbetweenRTandGNDand825-kΩresistorbetweenSS_ENpintoGND)doesnotgeneratethesynchronizationpulses.TheSlavecontrollersynchronizesitsownclocktothefallingedgeofsynchronizationsignalthusoperating90°phaseshiftedversusthemasterconverter’sfrequencyFSW(nom).BecausetheSlaveissynchronizedtothefallingedgeoftheSYNCpulses,theslaveoperatesat180˚delayedversusMaster’sCLKor90˚delayedversusoutputswitchingpulsesofMaster.

SuchoperationbetweenMasterandSlaveprovidesmaximuminputcapacitorandoutputcapacitorripplecancellationeffectifinputsandoutputsofconvertersaretiedtogether.Toavoidsystemissuesduringthesynchronizedoperationoffewconvertersthefollowingconditionsshouldbetakencareof.

•IfanyconverterisconfiguredaasaSlave,theSYNCfrequencymustbegreaterthanorequalto1.8timestheconverterfrequency.

•Slaveconverterdoesnotstartuntilatleastonesynchronizationpulsehasbeenreceived.

•IfanyorallconvertersareconfiguredasSlaves,theneachconverteroperatesatitsownfrequencywithoutsynchronizationafterreceivingatleastonesynchronizationpulse.Thus,Ifthereisaninterruptionofsynchronizationpulsesattheslaveconverter,thenthecontrollerusesitsowninternalclockpulsestomaintainoperationbasedontheRTvaluethatisconnectedtoGNDintheSlaveconverter.•InMastermode,SYNCpulsesstartafterSSpinpassesitsEnablethresholdwhichis0.55V.

•SlavestartsgeneratingSS/ENvoltageeventhoughsynchronizationpulseshavenotbeenreceived.

•ItisrecommendedthattheSSontheMastercontrollerstartsbeforetheSSontheSlavecontroller;thereforeSS/ENpinonmasterconvertermustreachitsEnablethresholdvoltagebeforeSS/ENontheslaveconverterstartsforproperoperation.Onthesamenote,it’srecommendedthatTMINresistorsonbothMasterandSlavearesetatthesamevalue.

CLK

SYNC_OUT

A

B

Figure18.SYNC_OUT(MasterMode)TimingDiagram

SYNC_IN

CLKA

B

Figure19.SYNC_IN(SlaveMode)TimingDiagram

26

SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006UCC28950½öÓÃÓÚÆÀ¹À¡£

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

Outputs(OUTA,OUTB,OUTC,OUTD,OUTE,OUTF)

••••••

AllMOSFETcontroloutputshave0.2-Adrivecapability.

ThecontroloutputsareconfiguredasP-MOSandN-MOStotempoleswithtypicalRDS(on)20Ωand10Ωaccordingly.

Thecontroloutputsarecapableofcharging100-pFcapacitorwithin12nsanddischargewithin8ns.TheamplitudeofoutputcontrolpulsesisequaltoVDD.

ControloutputsaredesignedtobeusedwithexternalgateMOSFET/IGBTdrivers.

Thedesignisoptimizedtopreventthelatchupofoutputsandverifiedbyextensivetests.

TheUCC28950hasoutputsOUTA,OUTBdrivingtheactiveleg,initiatingthedutycyclelegofpowerMOSFETsinphase-shiftedfullbridgepowerstage,andoutputsOUTC,OUTDdrivingthepassiveleg,completingthedutycycleleg,asitisshownintypicaltimingdiagraminFigure47.OutputsOUTEandOUTFareoptimizedtodrivethesynchronousrectifierMOSFETs(Figure20).Theseoutputshave200-mApeak-currentcapabilitiesandaredesignedtodriverelativelysmallcapacitiveloadslikeinputsofexternalMOSFETorIGBTdrivers.Recommendedloadcapacitanceshouldnotexceed100pF.TheamplitudeofoutputsignalisequaltoVDDvoltage.

ThecapacitorsCOSSshowninFigure20areinternalMOSFETcapacitancesthatmustbetakenintoaccountduringdesignproceduretoestimatezerovoltageconditionandswitchinglosses.

+COSSOUTALLKXTLmCOSSOUTC

RPRVS

ACOSSOUTB-BCOSSOUTD

COSSOUTECOSSOUTFLODCRCO-

VOUT+

Figure20.PowerStage

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

27

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£

www.ti.com

SupplyVoltage(VDD)

Connectthispintobiassupplyfrom8Vto17Vrange.Placehighquality,lowESRandESL,atleast1-µFceramicbypasscapacitorCVDDfromthispintoGND.Itisrecommendedtouse10-ΩresistorinseriestoVDDpintoformRCfilterwithCVDDcapacitor.

Ground(GND)

Allsignalsarereferencedtothisnode.Itisrecommendedtohaveaseparatequiteanalogplaneconnectedinoneplacetothepowerplane.TheanalogplanecombinesthecomponentsrelatedtothepinsVREF,EA+,EA-,COMP,SS/EN,DELAB,DELCD,DELEF,TMIN,RT,RSUM.ThepowerplanecombinesthecomponentsrelatedtothepinsDCM,ADELEF,ADEL,CS,SYNC,OUTF,OUTE,OUTD,OUTC,OUTB,OUTA,andVDD.AnexampleoflayoutandgroundplanesconnectionisshowninFigure21.

R1R2CREF12UCC28950VREFEA+EA-COMPSS/ENDELABDELCDDELEFTMINGND24VDD23OUTA22OUTB21OUTC20OUTD19OUTE18OUTF17SYNC16CS15ADEL14ADELEF13RA(hi)ABCDEFCVDDVDDR3VSENSER4R6C3C2C1R534CSSENABLERABRCDREFRT(min)RTRSUM)RDCM(hi)VREF56789AnalogPlanePowerPlaneSYNC10RT11RSUM12DCMRARAEF(hi)CurrentSenseR7RCSRDCMRAEFFigure21.LayoutRecommendationforAnalogandPowerPlanes

28SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

TYPICALCHARACTERISTICS

UVLOTHRESHOLDS

vs

TEMPERATURE

7.6

UVLO-UnderVoltageLockoutHysteresis-mVUVLO-UnderVoltageLockoutThresholds-VUVLOHYSTERESIS

vs

TEMPERATURE

640

7.4UVLO_RTH630

7.27.06.86.66.4

UVLO_FTH620UVLO_HYST610

600

590

6.2

-40

25

TJ-Temperature-°C

125

580

-40

25

TJ-Temperature-°C

125

Figure22.Figure23.

SUPPLYCURRENT

vs

TEMPERATURE

3.9

250

STARTUPCURRENT

vs

TEMPERATURE

IDD-OperatingSupplyCurrent-mA3.8

IDD-StartupCurrent-mA200

3.7

150

3.6

100

3.5

3.4

-40

25

TJ-Temperature-°C

125

50

-40

25

TJ-Temperature-°C

125

Figure24.Figure25.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

29

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

TYPICALCHARACTERISTICS(continued)

VOLTAGEREFERENCE(VDD=12V)

vs

TEMPERATURE

5.010

ILOAD=10mAVREF-LineVoltageRegulation-VLINEVOLTAGEREGULATION(ILOAD=10mA)

vs

TEMPERATURE

5.001

5.005VREF-VoltageReference-V4.999

VREF_10mA_12VDD5.000

ILOAD=1mA4.997

VREF_10mA_10VDD4.9954.990

ILOAD=10mA4.9954.993

4.985

ILOAD=20mA4.991

VREF_10mA_8VDD4.9804.975

-40

25

TJ-Temperature-°C

125

4.9894.9874.985-40

25

TJ-Temperature-°C

125

Figure26.Figure27.

SHORTCIRCUITCURRENT

vs

TEMPERATURE

38.5

95.495.2DMAX-MaximumDutyCycle-%MAXIMUMDUTYCYCLE

vs

TEMPERATURE

38.0ShortCircuitCurrent-mA95.094.894.694.494.294.093.893.6

37.537.036.536.0

35.535.0

-40

25

TJ-Temperature-°C

125

-4025

TJ-Temperature-°C

125

Figure28.Figure29.

30SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

TYPICALCHARACTERISTICS(continued)

NOMINALSWITCHINGFREQUENCY

vs

TEMPERATURE

95.4FSW(nom)-NominalSwitchingFrequency-HzFSW(max)-MaximumSwitchingFrequency-HzMAXIMUMSWITCHINGFREQUENCY

vs

TEMPERATURE

1079

95.0

1059

94.6

1039

94.0

1019

93.6

-40

25

TJ-Temperature-°C

125

999

-40

25

TJ-Temperature-°C

125

Figure30.Figure31.

ERRORAMPLIFIEROFFSETVOLTAGE

vs

TEMPERATURE

0.00-0.05ErrorAmplifierOFFSETvoltage-mV125120AVOL-VoltageErrorAmplifier-dBVOLTAGEERRORAMPLIFIER

(OpenLoopGain)

vs

TEMPERATURE

-0.10-0.15-0.20-0.25-0.30-0.35-0.40-0.45-0.50

-40

25

TJ-Temperature-°C

125

VIO=3.6VVIO=2.5VVIO=500mV115110105100959085

-40

25

TJ-Temperature-°C

125

Figure32.Figure33.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

31

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

TYPICALCHARACTERISTICS(continued)

ISSCHARGECURRENT

vs

TEMPERATURE

26.0

SHUTDOWN/RESTART/RESETTHRESHOLD

vs

TEMPERATURE

0.60VSS(std)-Shutdown/Restart/ResetThreshold-V25.5ISS-ChargeCurrent-mA0.55

25.0

0.50

0.45

24.5

0.40

24.0

0.35

23.5

-40

25

TJ-Temperature-°C

125

0.30

-40

25

TJ-Temperature-°C

125

Figure34.Figure35.

SSPULL-UPTHRESHOLD

vs

TEMPERATURE

3.71

4.694.69

VSS(pu)-SSPullupThreshold-VVSS(CL)-SSClampVoltage-VSSCLAMPVOLTAGE

vs

TEMPERATURE

3.71

4.684.684.684.684.684.674.67

3.70

3.70

3.69

-40

25

TJ-Temperature-°C

125

4.67

-40

25

TJ-Temperature-°C

125

Figure36.Figure37.

32SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

TYPICALCHARACTERISTICS(continued)

CURRENTSENSECYCLE-BY-CYCLELIMIT

vs

TEMPERATURE

1.996VCS(lim)-CurrentSenseCycle-By-CycleLimit-VCURRENTSENSEPROPAGATIONDELAY

vs

TEMPERATURE

110TCS(prop)-CurrentSensePropagationDelay-ns1.994

107

1.992

104

1.990

1.988

101

1.98698

1.984

-40

25

TJ-Temperature-°C

125

95

-40

25

TJ-Temperature-°C

125

Figure38.Figure39.

OUTPUTSSINKRESISTANCE

vs

TEMPERATUREOUTPUTSSINKRESISTANCE

vs

TEMPERATURE

17.5RSINK-OutputsSinkResistance-WRSINK-OutputsSinkResistance-W17.5

RSINK_OUTF15.5

RSINK_OUTDRSINK_OUTA13.5

RSINK_OUTE15.5

RSINK_OUTCRSINK_OUTB13.5

11.511.5

9.5

9.5

7.5

-40

25

TJ-Temperature-°C

125

7.5

-40

25

TJ-Temperature-°C

125

Figure40.Figure41.

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

33

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

TYPICALCHARACTERISTICS(continued)

OUTPUTSSOURCERESISTANCE

vs

TEMPERATURE

OUTPUTSSOURCERESISTANCE

vs

TEMPERATURE

25

RSRC-OutputsSourceResistance-WRSRC-OutputsSourceResistance-W25

RSRC_OUTFRSRC_OUTE23

RSRC_OUTDRSRC_OUTB21

23

RSRC_OUTCRSRC_OUTA21

1919

1717

15

-40

25

TJ-Temperature-°C

125

15

-40

25

TJ-Temperature-°C

125

Figure42.Figure43.

DEAD TIME DELAY

vs

TEMPERATURE

50

DEADTIMEDELAY

vs

TEMPERATURE

280

TCDSET2TCDSET1TOFFTIME-DeadTimeDelay-ns45

TABSET1270TOFFTIME-DeadTimeDelay-nsTABSET2260

40250

240

TAFSET2TBESET235

TAFSET1TBESET130

-40

25

TJ- Temperature - °C

125

230220

-40

25

TJ-Temperature-°C

125

Figure44.Figure45.

34SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

TYPICALCHARACTERISTICS(continued)

DCMTHRESHOLD

vs

TEMPERATURE

0.405

0.400DCM-DCMThreshold-V0.3950.390

0.3850.380

0.3800.375

-40

25

TJ-Temperature-°CFigure46.

125

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

35

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

APPLICATIONINFORMATION

UCC28950ApplicationDescription

Theefficiencyimprovementofphase-shiftedfull-bridgeDC/DCconverterwithUCC28950isachievedbyusingthesynchronousrectificationtechnique,controlalgorithmprovidingZVSconditionovertheentireloadcurrentrange,accurateadaptivetimingofthecontrolsignalsbetweenprimaryandsecondaryFETsandspecialoperatingmodesatlightloadforthehighestefficiencyandpowersaving.ThesimplifiedelectricaldiagramofthisconverterisshowninFigure47.Thecontrollerdeviceislocatedonthesecondarysideofconverter,althoughitcouldbelocatedonprimarysideaswell.ThelocationonsecondarysideallowseasypowersystemlevelcommunicationandbetterhandlingofsometransientconditionsthatrequirefastdirectcontrolofthesynchronousrectifierMOSFETs.ThepowerstageincludesprimarysideMOSFETs,QA,QB,QC,QDandsecondarysidesynchronousrectifierMOSFETs,QEandQF.Forexample,forthe12-Voutputconvertersinserverpowersuppliesuseofthecenter-tappedrectifierschemewithL-Coutputfilterisapopularchoice.Tomaintainhighefficiencyatdifferentoutputpowerconditions,theconverteroperatesinnominalsynchronousrectificationmodeatmidandhighoutputpowerlevels,withtransitioningtothedioderectifiermodeatlightloadandfurtherfollowedbytheburstmode,astheoutputpowerbecomesevenlower.Allthesetransitionsarebasedonthecurrentsensingontheprimarysideusingthecurrentsensetransformerinthisspecificcase.

TSW(nom)TABSET2OUTATABSET1OUTBTCDSET2TSW(osc)OUTCTCDSET1OUTDTBESET1OUTETAFSET1TBESET2OUTFTAFSET2IPR

VDSQETON=0.5xDxTSW(nom)VDSQFVOUTx(1-D)/DVLOUTVOUTILOUT

IOUTFigure47.MajorWaveformsofPhase-ShiftedConverter

36SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

Majorwaveformsofthephase-shiftedconverterduringnominaloperationmodeareshowninFigure47.UppersixwaveformsintheFigure47showtheoutputdrivesignalsofthecontroller.Atnominalmode,theoutputsOUTEandOUTFoverlapduringthepartoftheswitchingcyclewhenthebothrectifierMOSFETsareconductingandthewindingsofpowertransformerareshorted.Current,IPR,isthecurrentflowingthroughtheprimarywindingofpowertransformer.Thebottomfourwaveformsshowthedrain-sourcevoltagesofrectifierMOSFETs,VDS_QEandVDS_QF,thevoltageattheoutputinductor,VLOUT,andthecurrentthroughtheoutputinductor,ILOUT.PropertimingbetweentheprimaryswitchesandsynchronousrectifierMOSFETsiscriticaltoachievehighestefficiencyandreliableoperationinthismode.ThecontrollerdeviceadjuststheturnOFFtimingofrectifierMOSFETsasfunctionofloadcurrenttoensuretheminimumconductiontimeandreverserecoverylossesoftheirinternalbodydiodes.

ZVSisanimportantfeatureofrelativelyhighinputvoltageconverterstoreduceswitchinglossesassociatedwiththeinternalparasiticcapacitancesofpowerswitchesandtransformers.ThecontrollerensuresZVSconditionsovertheentireloadcurrentrangebyadjustingthedelaytimebetweentheprimaryMOSFETsswitchinginthesameleginaccordancetotheloadvariation.ControlleralsolimitstheminimumON-timepulseappliedtothepowertransformeratlightload,allowingthestorageofsufficientenergyintheinductivecomponentsofpowerstagefortheZVStransition.

Assoonastheloadcurrentkeepsreducingfromthemidloadcurrentdowntono-loadcondition,thecontrollerselectsthemostefficientpowersavingmodebymovingtheconverterfromthenominaloperationmodetothediscontinuous-currentdiode-rectificationmodeand,eventually,atverylight-loadandatno-loadcondition,totheburstmode.Thesemodesandrelatedoutputsignals,OUTE,OUTF,drivingtherectifierMOSFETs,areshowninFigure48.

OUTE(CCMMode)OUTF(CCMMode)

OUTE

OUTEandOUTFaredisabledifVCSTransformerWindingMagnetizingCurrent

Figure48.MajorWaveformsDuringTransitionsBetweenDifferentOperatingModes

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

37

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

ÓÉ Foxit Reader ±à¼-°æÈ¨ËùÓÐ (C) Foxit Software Company,2005-2006½öÓÃÓÚÆÀ¹À¡£

www.ti.com

ItisnecessarytopreventthereversecurrentflowthroughthesynchronousrectifierMOSFETsandoutputinductoratthelightload,duringparalleloperationandatsometransientconditions.Suchreversecurrentresultsincirculatingofsomeextraenergybetweentheinputvoltagesourceandtheloadand,therefore,causesincreasedlossesandreducesefficiency.AnothernegativeeffectofsuchreversecurrentisthelossofZVScondition.Thesuggestedcontrolalgorithmpreventsreversecurrentflow,stillmaintainingmostofthebenefitsofsynchronousrectificationbyswitchingoffthedrivesignalsofrectifierMOSFETsinapredeterminedway.Atsomepre-determinedloadcurrentthreshold,thecontrollerdisablesoutputsOUTEandOUTFbybringingthemdowntozero.

SynchronousrectificationusingMOSFETsrequiressomeelectricalenergytodrivetheMOSFETs.Thereisaconditionbelowsomelight-loadthresholdwhentheMOSFETdriverelatedlossesexceedthesavingprovidedbythesynchronousrectification.Atsuchlightload,itisbesttodisablethedrivecircuitandusetheinternalbodydiodesofrectifierMOSFETs,orexternaldiodesinparallelwiththeMOSFETs,formoreefficientrectification.Inmostpracticalcases,thedrivecircuitneedstobedisabledclosetoDCMmode.Thismodeofoperationiscalleddiscontinuous-currentdiode-rectificationmode.

Atverylight-loadandno-loadcondition,thedutycycle,demandedbytheclosed-feedback-loopcontrolcircuitforoutputvoltageregulation,canbeverylow.ThiscouldleadtothelossofZVSconditionandincreasedswitchinglosses.ToavoidthelossofZVS,thecontrolcircuitlimitstheminimumON-timepulseappliedtothepowertransformerusingresistorfromTMINpintoGND.Therefore,theonlywaytomaintainregulationatverylightloadandatno-loadconditionistoskipsomepulses.Thecontrollerskipspulsesinacontrollablemannertoavoidsaturationofthepowertransformer.Suchoperationiscalledburstmode.InBurstModetherearealwaysanevennumberofpulsesappliedtothepowertransformerbeforetheskippingofftime.Thus,thefluxinthecoreofthepowertransformeralwaysstartsfromthesamepointduringthestartofeveryburstofpulses.

VoltageLoopCompensationRecommendation

ForbestresultsinthevoltageloopitisrecommendedtouseType2orType3compensationnetwork(Figure49).Atype2compensationnetworkdoesnotrequirepassivecomponentsCZ2andRZ2.Type1compensationisnotversatileenoughforaphaseshiftedfullbridge.WhenevaluatingtheCOMPforbestresultsitisrecommendedtoputa1-kΩresistorbetweenthescopeprobeandtheCOMPpinoftheUCC28950.

VOUTVREFEA++CZ2RDRZ2RIEA-1 kWRCZ1RZ1CP1RWhen evaluating COMP, for bestresults put a 1-kWresistor betweenCOMPand probe.Figure49.Type3CompensationEvaluation

38SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

UCC28950

www.ti.com

SLUSA16A–MARCH2010–REVISEDJULY2010

ExperimentalResultsExample

Thefollowingexperimentalresultsarebasedon660-Woutputpowerprototypeofphaseshiftedfull-bridgeDC/DCconverter.Theinputvoltageis300Vto400Vandtheoutputis12V,55A.TheprimaryMOSFETsareSPA11N60CFDandthesynchronousrectifierMOSFETsareFDP047AN08A0,twoinparallel.ThemeasuredefficiencyoftheprototypeisshowninFigure50.

EFFICIENCY

vs

LOADCURRENT

100989694

Efficiency-%VIN=300VwithLRES92908886848280

0

5

10

15

20

25

30

35

40

45

50

55

LoadCurrent-A

VIN=400VwithLRESVIN=350VwithLRESFigure50.EfficiencyofthePrototypePhase-ShiftedConverter

(VIN=300V,350Vand400V,VOUT=12V)

Becauseofthepowersavingneedevenatverylightandno-loadconditions,carefuloptimizationofoperationatlightloadconditionisrequiredtosettheproperboundariesbetweendifferentoperationmodes.TheresultofthisoptimizationisshowninFigure51.Thisplotdemonstratesthepowersavingswhilemovingfromthesynchronousrectificationmodeabove1-Aloadcurrent,intothediscontinuouscurrentmodewiththedioderectificationbetween0.3-Aand1-Aloadcurrent,andeventuallyintotheburstmodeoperationatloadcurrentbelow0.3A.

LIGHT-LOADPOWERLOSSES

vs

LOADCURRENT

121110Light-LoadPowerLosses-W9876543210

0

0.2

DCMModewithDiodeRectificationCCMModewithSynchronousFETsBurstMode0.40.60.81.01.21.41.61.82.0

LoadCurrent-A

Figure51.PowerLossesofthePrototypeatLight-LoadandNo-LoadConditions

Copyright©2010,TexasInstrumentsIncorporatedSubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

39

UCC28950

SLUSA16A–MARCH2010–REVISEDJULY2010

www.ti.com

REVISIONHISTORY

ChangesfromOriginal(March2010)toRevisionA•••••••••

Page

ChangedUCC28950TypicalApplicationDiagram...............................................................................................................1ChangedConverterswitchingfrequencyfrom1400kHzto1000kHz.................................................................................3ChangedFunctionalBlockDiagram.....................................................................................................................................8ChangedTypicalApplicationDiagram..................................................................................................................................8AddedFigure5...................................................................................................................................................................15ChangedEquation..............................................................................................................................................................16AddedTypicalApplicationDiagram....................................................................................................................................16AddedalwaysdeliverevennumberofPowercyclestoPowertransformer......................................................................18Deleteddelivereitheroneortwopowerdeliverycyclepulses.IfcontrollerdeliversapowerdeliverycycleforOUTBandOUTC,thenitstops.IfitstartsdeliveringtoOUTAandOUTD,thenitcontinueswithanotherpowerdelivery

cycletoOUTBandOUTC,andthenitstops......................................................................................................................18

40SubmitDocumentationFeedback

ProductFolderLink(s):UCC28950

Copyright©2010,TexasInstrumentsIncorporated

PACKAGE OPTION ADDENDUM

www.ti.com

20-Jan-2011

PACKAGING INFORMATION

Orderable DeviceUCC28950PWUCC28950PWR

(1)

Status

(1)

Package TypePackage

Drawing

TSSOPTSSOP

PWPW

Pins2424

Package Qty

602000

Eco Plan

(2)

Lead/Ball Finish

MSL Peak Temp

(3)

Samples(Requires Login)Contact TI Distributoror Sales OfficeRequest Free Samples

ACTIVEACTIVE

Green (RoHS& no Sb/Br)Green (RoHS& no Sb/Br)

CU NIPDAULevel-1-260C-UNLIMCU NIPDAULevel-1-260C-UNLIM

The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms \"Lead-Free\" or \"Pb-Free\" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines \"Green\" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

(3)

MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 1

PACKAGEMATERIALSINFORMATION

www.ti.com

20-Jul-2010

TAPEANDREELINFORMATION

*Alldimensionsarenominal

Device

PackagePackagePinsTypeDrawingTSSOP

PW

24

SPQ

ReelReelA0DiameterWidth(mm)(mm)W1(mm)330.0

16.4

6.95

B0(mm)8.3

K0(mm)1.6

P1(mm)8.0

WPin1(mm)Quadrant16.0

Q1

UCC28950PWR2000

PackMaterials-Page1

PACKAGEMATERIALSINFORMATION

www.ti.com

20-Jul-2010

*Alldimensionsarenominal

DeviceUCC28950PWR

PackageType

TSSOP

PackageDrawing

PW

Pins24

SPQ2000

Length(mm)

346.0

Width(mm)346.0

Height(mm)

33.0

PackMaterials-Page2

IMPORTANTNOTICE

TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements,andotherchangestoitsproductsandservicesatanytimeandtodiscontinueanyproductorservicewithoutnotice.Customersshouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.AllproductsaresoldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment.

TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandardwarranty.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwheremandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed.

TIassumesnoliabilityforapplicationsassistanceorcustomerproductdesign.Customersareresponsiblefortheirproductsand

applicationsusingTIcomponents.Tominimizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovideadequatedesignandoperatingsafeguards.

TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright,orotherTIintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.InformationpublishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesorawarrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI.

ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompaniedbyallassociatedwarranties,conditions,limitations,andnotices.Reproductionofthisinformationwithalterationisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.

ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesfortheassociatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements.

TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonablybeexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverningsuchuse.Buyersrepresentthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and

acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproductsandanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybeprovidedbyTI.Further,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsinsuchsafety-criticalapplications.

TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsarespecificallydesignatedbyTIasmilitary-gradeor\"enhancedplastic.\"OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary

specifications.BuyersacknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyattheBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsaredesignatedbyTIascompliantwithISO/TS16949requirements.Buyersacknowledgeandagreethat,iftheyuseanynon-designatedproductsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements.

FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions:ProductsAudioAmplifiersDataConvertersDLP®ProductsDSP

ClocksandTimersInterfaceLogicPowerMgmtMicrocontrollersRFID

RF/IFandZigBee®Solutions

www.ti.com/audioamplifier.ti.comdataconverter.ti.comwww.dlp.comdsp.ti.comwww.ti.com/clocksinterface.ti.comlogic.ti.compower.ti.commicrocontroller.ti.comwww.ti-rfid.comwww.ti.com/lprf

TIE2ECommunityHomePage

e2e.ti.com

Applications

CommunicationsandTelecomwww.ti.com/communicationsComputersandPeripheralsConsumerElectronicsEnergyandLightingIndustrialMedicalSecurity

Space,AvionicsandDefenseTransportationandAutomotiveVideoandImagingWireless

www.ti.com/computerswww.ti.com/consumer-appswww.ti.com/energywww.ti.com/industrialwww.ti.com/medicalwww.ti.com/security

www.ti.com/space-avionics-defensewww.ti.com/automotivewww.ti.com/videowww.ti.com/wireless-apps

MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265

Copyright©2011,TexasInstrumentsIncorporated

因篇幅问题不能全部显示,请点此查看更多更全内容

Top