11
Vol.45
No.11
2009
11
1390—1395ACTAMETALLURGICASINICANov.2009pp.1390–1395
Fe
Mn
Ni30Cu70
∗
(
,
116024)
Ni30Cu70(
,%)
,
Fe
Mn
.
,
Fe
Mn
Ni
12
(Fe1−xMnx)Ni12
.
Cu
,
[M1/13Ni12/13]30Cu70=[(Fe1−xMnx)Ni12]Cu30.3,M=(Fe1−xMnx).[(Fe1−xMnx)Ni12]Cu30.3
X
,
,
[(Fe0.75Mn0.25)Ni12]Cu30.3
,
3.5%NaCl
.
Cu–Ni
,Fe(Mn)
,
,
,
TG111,TG146
A
0412−1961(2009)11−1390−06
STUDYONTHECLUSTER–BASEDMODELOFNi30Cu70SOLIDSOLUTIONWITHFeANDMnANDITSCORROSIONRESISTANCE
ZHANGJie,WANGQing,WANGYingmin,DONGChuang
KeyLabofMaterialsModificationbyLaser,IonandElectronBeamsofMinistryofEducation,SchoolofMaterialsScience&Engineering,DalianUniversityofTechnology,Dalian116024
Correspondent:DONGChuang,professor,Tel:(0411)847083,E-mail:dong@dlut.edu.cn
SupportedbyNationalNaturalScienceFoundationofChina(Nos.50671018and50631010),National
BasicResearchProgramofChina(No.2007CB613902)andNationalHighTechnology
ResearchandDevelopmentProgramofChina(No.2007AA05Z102)
Manuscriptreceived2009–04–29,inrevisedform2009–07–31
ABSTRACTMinorFeandMnadditionsarenecessarytoenhancethecorrosionresistanceofcom-mercialCu–Nialloys.ThepresentpaperaimsatoptimizingtheadditionamountsofFeandMninCu70Ni30(atomicfraction,%)alloyusingacluster–basedsolidsolutionmodel.Inthismodelitas-sumedthatoneFe(Mn)atomandtwelveNiatomsformedaclusterconsistedofFe(Mn)–centeredandNi–surroundedcube–octahedronandthelimitsolidsolutionwouldbecomposedofisolatedFe(Mn)Ni12clustersembeddedintheCumatrix.TheratiooftheFe(Mn)atomsanditssurroundingNiatomsis112,andthelimitsolidsolutioncompositionofFe(Mn)–modifiedCu70Ni30alloyis[M1/13Ni12/13]30Cu70=[(Fe1−xMnx)Ni12]Cu30.3,M=(Fe1−xMnx).TheOM,XRDandelectrochemicalcorrosionmeasurementswereusedtocharacterizethemicrostructureandcorrosionresistanceper-formanceof[(Fe1−xMnx)Ni12]Cu30.3.Theresultsindicatedthatthesolidsolubilitylimitativealloys[(Fe0.75Mn0.25)Ni12]Cu30.3hasthebestcorrosionresistancein3.5%NaClaqueoussolution.
KEYWORDSCu–Nialloy,additionofFe(Mn),solidsolutionmodel,clusterstructure,
corrosion–resistance
70/30Cu–Ni(
*
,%,
)
50671018
50631010,
[1−3]
.
Ni
Fe
2007CB613902
2007AA05Z102
:2009–04–29,
:2009–07–31
:
,
,1979
,
[4,5]
Cu–Ni
70/30Cu–Ni0.5%—2.0%Fe
.90/10Cu–Ni,Fe,,Fe>2%
,
,
11
:
Fe
Mn
Ni30Cu70
1391
[6−9]
α,
.
Fe
Cu–Ni
,
0.5%—2.0%Mn[6]
.FeMnCu–Ni
,
Fe
Mn
Cu–Ni,
,
.
Fe
Mn70(Ni30Cu,%,
)
.
X(XRD)
,
.
1
,
,
+
,
[10,11]
.
,
,
,
,
,
,
,
,
[12]
[13]
.
Bragg–Williams
,
,
,
,
.
,
,
,
,
.
Cu–Ni
,
345.4
[14]
,
;FeCu,
[15]
600.1Cu–Ni–Fe[16]
800
FeNi=1
12
1Cu–Ni–Fe800[16]FeNi=1
12
Fig.1IsothermalsectionoftheCu–Ni–Fealloyphase
diagram[16]andtheFeNi=112composi-tionline
(
)
.
,Fe
Cu–Ni
Ni
,NiFe
Cu
,
Cu–Ni–Fe
FeNi=112
Fe
Cu,,
Cu–Ni–Fe
,Fe
NiFe
Ni≈112.
Fe
Ni30Cu70,Cu,Ni
Fe
0.128,0.1250.127nm,
,
,
.Ni–Fe,Cu–NiCu–Fe−2,413kJ/mol[17],,
,CuNiFe,Cu13,2a.FeNiFe
2fcc[(Fe1−xMnx)Ni12]Cu30.3
Fig.2Clustermodeloffcc[(Fe1−xMnx)Ni12]Cu30.3solid
solutionalloys
(a)(Fe1−xMnx)Ni12andCu13cube–octahedral
clusters
(b)neighboringbutisolated(Fe1−xMnx)Ni12clus-terscorrespondingtothesolubilitylimit
(c)Fe–Ni–Fe–Ni–typelong–rangeorderintheFeNi3
phase
(d)clustermodelfortheCu–Ni–Fesolubilitylimit
alloywheretheFe1Ni12atomicclustersareem-beddedinCumatrix
139245
,Ni12
Fe1Ni12
,Fe1Ni12,2b
,
···–Ni–Fe–Ni–Ni–Fe–Ni–···,FeNi=1
12.Fe,Fe1Ni12
,Ni,
···–Ni–Fe–Ni–Fe–Ni–···,
···–Ni–Fe–Ni–Fe–Ni–···FeNi3,FeNi3,2c.,FeNi30Cu70,
[Fe1/13Ni12/13]30Cu70,
[Fe1Ni12]Cu30.3.Fe/Ni[18]
,,FeNi=112Cu–Ni–Fe.
FeMnNi30Cu70
,Ni–MnCu–Mn−84kJ/mol[17].Fe,MnCu,Ni
,FeMn,(Fe1−xMnx)Ni12Cu1312
,2d.,Fe
MnCu70Ni30,
(Ni12/13M1/13)30Cu70,M=(Fe,Mn),[(Fe1−xMnx)Ni12]Cu30.3.FeMn
,Ni30Cu70FeMn
.
2
,
Ni13Cu30.3
(Ni30Cu70)FeMn[(Fe1−x-Mnx)Ni12]Cu30.3(x=0,0.25,0.5,0.751),
1.Cu99.98%,
Ni99.99%,Fe99.99%Mn99.98%.
8005h,.X(XRD,CuKα)
;(OM);EG&GM342
,,3.5%()NaCl,25,
1[(Fe1−xMnx)Ni12]Cu30.3Ni13Cu30.3
Table1Chemicalcompositionsof[(Fe1−xMnx)Ni12]Cu30.3
andNi13Cu30.3alloys
xAtomfraction,%Massfraction,%CuNiFeMnCuNiFeMn07027.692.31071.7226.202.0800.257027.691.730.5871.7326.201.560.510.57027.691.651.6671.7326.211.041.020.757027.690.581.7371.7326.210.521.1
7027.6902.3171.7426.2102.05Ni13Cu30.3
70
30
0
0
71.
28.36
0
0
60mV/min,,
(SCE),Pt,.
3.5%NaCl,240h
,v=(w1−w2)/St(,w1,w2,S
,t).
33.1
XRD3Ni13Cu30.3[(Fe1−xMnx)Ni12]Cu30.3(FeMnNi30Cu70)8005hXRD.fcc,Cu
,,,CuNi,FeMnCu,fcc.
3fcc
Ni13Cu30.3[(Fe1−xMnx)Ni12]Cu30.3
XRD
Fig.3XRDpatternsofthefccstructuralNi13Cu30.3and
[(Fe1−xMnx)Ni12]Cu30.3alloysafterannealingat800for5h
3.2
4Ni13Cu30.3[(Fe1−xMnx)Ni12]Cu30.38005h.4a,Ni13Cu30.38005h,100—250μm,.4bf,FeMn100—200μm.4c,deFeMn,
,50—100μm.Cu–Ni
Fe,Fe1Ni12
,,;
FeMn,Fe1Ni12Mn1Ni12
Fe/Ni,
.3.3
5Ni13Cu30.3[(Fe1−xMnx)Ni12]Cu30.3
(x=0,0.25,0.5,0.751)
.Tafel
[(FexMn1−x)Ni12]Cu30.3
11
:
Fe
Mn
Ni30Cu70
1393
4Ni13Cu30.3
[(Fe1−xMnx)Ni12]Cu30.3
800
5h
Fig.4OMimagesoftheNi13Cu30.3(a)and[(Fe1−xMnx)Ni12]Cu30.3alloyswithx=0(b),x=0.25(c),x=0.5(d),
x=0.75(e)andx=1(f)afterannealingat800for5h
2Ni13Cu30.3
[(Fe1−xMnx)Ni12]Cu30.3
Table2CorrosionparametersoftheNi13Cu30.3and[(Fe1−x-Mnx)Ni12]Cu30.3alloysin3.5%NaClsolutionob-tainedbyfittingthecurvesinFig.5
x00.250.50.75
EcorrV−0.137−0.123−0.133−0.152−0.175−0.212
icorrμA/cm210.97.512.122.5.385.5
βaV/dec0.1560.1940.1560.1950.1720.184
βcV/dec−0.091−0.099−0.101−0.120−0.125−0.143
5Ni13Cu30.3
[(Fe1−xMnx)Ni12]Cu30.3
1Ni13Cu30.3
Fig.5PotentiodynamicpolarizationcurvesoftheNi13Cu30.3and[(Fe1−xMnx)Ni12]Cu30.3al-loysin3.5%NaClsolution
Note:Ecorr—corrosionpotential,icorr—currentden-sity,βa—anodicTafelslope,βc—cathodicTafelslope
(βc)
(Ecorr)
(icorr),
(βa)
2.
2
Fe
,
Mn
Ni13Cu30.3
Ni30Cu70
,
1394
45
,
,
.
Mn[Mn1Ni12]Cu30.345.3μA/cm2,−0.175V,;FeMn[(Fe0.75-Mn0.25)Ni12]Cu30.3
(−0.123V)(8.5μA/cm2),
0.052V,36.8μA/cm2,
;
[(Fe0.5Mn0.5)Ni12]Cu30.30>[Fe1Ni12]Cu30.3>[(Fe0.25-Mn0.75)Ni12]Cu30.3
.,
Fe
Mn
,.
Mn[Mn1Ni12]Cu30.38005h,,(4f).
FeMn
[(Fe0.75Mn0.25)Ni12]Cu30.3
,
(4c),
,
[(Fe0.75Mn0.25)Ni12]Cu30.3.Cu–NiFeMn
FeMnCu–Ni,FeCu–Ni
[7].
3.4
,
[Fe1Ni12]Cu30.3
3.5%-NaCl
,
6.
,
,
,
,
,
,
,
,,
.[Fe1Ni12]Cu30.33.5%NaCl240h,0.0025μm/h.
,240h
.7FeMn[(Fe1−x-Mnx)Ni12]Cu30.3(x=0,0.25,0.5,0.751)
3.5%NaCl240hMn
.,FeMn
[Fe1Ni12]Cu30.3,FeMnCu70Ni30.[(Fe1−xMnx)Ni12]Cu30.3,Mn
x=0.25,[(Fe0.75Mn0.25)Ni12]Cu30.3
,0.0012μm/h,;Mn
x>0.25,,Mn,FeCu70Ni30
.FeCu70Ni30,
Fe
Mn[(Fe0.75Mn0.25)Ni12]Cu30.3
,
6[Fe1Ni12]Cu30.3
800
5h
3.5%NaCl
Fig.6Changesofmasslossandthecorrespondingcorro-sionrateofthe(Fe1Ni12)Cu30.3alloyafterannealingat800for5hin3.5%NaClsolutionwithtime
7[(Fe1−xMnx)Ni12]Cu30.3
Mn
Fig.7ChangesofstaticimmersioncorrosionratewithMn
contentxof[(Fe1−xMnx)Ni12]Cu30.3alloy(theda-tumofNi13Cu30.3isalsogivenascomparison)
Fe
Mn
,,
,
.
4
,
Fe
Mn
Ni30Cu70
,
(Fe1−xMnx)Ni12
Cu1312
fcc
,
[(Fe1−xMnx)Ni12]Cu30.3.
,
Mn
,x=0.25(Cu70Ni27.7Fe1.7Mn0.6(,%)=Cu–26.2Ni–1.6Fe–0.5Mn(,%)),800
5h,,50—100μm,3.5%NaCl,
0.0012μm/h.
11
:
Fe
Mn
Ni30Cu70
1395
[1]MarsdenDD.MaterPerformance,1978;17:9[2]PearsonC.BrCorrosJ.1972;7:61
[3]WangJH,JiangXX,LiSZ.ActaMetallSin,1995;6A:
266(,,.,1995;6A:266)[4]EfirdKD.Corrosion,1977;33:347
[5]DrolengaLJP,IjsselingFP,KolsterBH.MaterCorros,
1983;34:167
[6]PopplewellJM,HartRJ.CorrosSci,1973;13:295[7]BaileyGL.JInstMetals,1951;79:243
[8]StewartWC,LaQueFL.Corrosion,1952;8:259
[9]ZhuXL,LinLY,LeiTQ.ActaMetallSin,1997;7:1256
(,,.,1997;7:1256)
[10]DongC,WangQ,QiangJB,WangYM,JiangN,Han
G,LiYH,WuJ,XiaJH.JPhys,2007;40D:R273
[11]
DongC,ChenWR,WangYG,QiangJB,WangQ,LeiY,MoniqueCD,DuboisJM.JNon–CrystSolids,2007;353:3405
[12]MiracleDB.ActaMater,2006;:4317
[13]BraggWL,WilliamsEJ.ProcRSocLondon,1934;145A:699
[14]
ChakrabartiDJ,LaughlinDE.ChenSW,ChangYA.BinaryAlloyPhaseDiagrams.MaterialsPark,OH,ASMInternational,1991:1442
[15]SwartzendruberLJ.PhaseDiagramsofBinaryIronAl-loys.MaterialsPark,OH,ASMInternational,1993:131[16]GuptaKP.IndianInstMetals,1990;1:290
[17]TakeuchiA,InoueA.MaterTransJIM,2000;41:1372[18]
ZhangJ,WangQ,WangYM,LiCY,WenLS,DongC.JMaterRes,inpress
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务