虚拟现实技术及其应用
学 号
姓 名
班 级
内容摘要:虚拟现实技术的发展史,虚拟现实技术的概念,虚拟现实技术的特征,虚拟现实系统的分类,虚拟现实技术的应用领域,虚拟现实技术的研究现状。
关键词:Virtual Realit系统、计算机、交互性、模拟仿真
一、虚拟现实技术的发展史
虚拟现实技术(Virtual Reality)简称VR技术,是20世纪末逐渐兴起的一门综合性信息技术,融合了数字图像处理、计算机图形学、人工智能、多媒体、传感器、网络以及并行处理等多个信息技术分支的最新发展成果。
1929年,Edward Link设计出用于训练飞行员的模拟器
1956年,Morton Heilig开发出多通道仿真体验系统Sensorama
1965年,Ivan Sutherland发表论文“Ultimate Display”(终极的显示)
1968年,Ivan Sutherland研制成功了带的头盔式立体显示器(Head
Mounted Display,HMD)
1972年,Nolan Bushnell开发出第一个交互式电子游戏Pong
1977年,Dan Sandin、Tom DeFanti和Rich Sayre研制出第一个数据手套——Sayre Glove
20世纪80年代,美国国家航空航天局(NASA)组织了一系列有关VR技术的研究 :1984年,NASA Ames研究中心的M.McGreevy 和J. Humphries开发出用于火星探测的虚拟环境视觉显示器;1987年,Jim Humphries设计了双目全方位监视器(BOOM)的最早原型。
1990年,在美国达拉斯召开的Siggraph会议上,明确提出VR技术研究的主要内容包括实时三维图形生成技术、多传感器交互技术和高分辨率显示技术,为VR技术的发展确定了研究方向。
从20世纪90年始,VR技术的研究热潮也开始向民间的高科技企业转移。著名的VPL公司开发出第一套传感手套命名为“DataGloves”,第一套HMD命名为“EyePhones”。
进入21世纪后,VR技术更是进入软件高速发展的时期,一些有代表性的VR软件开发系统不断在发展完善,如MultiGen Vega、OpenSceneGraph、Virtools等。
二、虚拟现实技术的概念
虚拟现实技术是指利用计算机生成一种模拟环境,并通过多种专用设备使用户“投入”
到该环境中,实现用户与该环境直接进行自然交互的技术。虚拟现实是一种由计算机和电子技术创造的新世界,是一个看似真实的模拟环境,通过多种传感设备,用户可根据自身的感觉,使用人的自然技能对虚拟世界中的物体进行考察和操作,参与其中的事件,同时提供视、听、触等直观而又自然的实时感知,并使参与者“沉浸”于模拟环境中。
虚拟现实(VirtualReality简称VR)是近年来出现的高新技术。VR是一项综合集成技术,涉及计算机图形学、人机交互技术传感技术、人工智能等领域。它用计算机生成逼真的三维视听使人作为参与者,通过适当装置自然地对虚拟世界进行体验和交互作用。VR主要有三方面的含义:第一,虚拟现实是借助于计算机生成逼真的实体,“实体”是对于人的感觉(视听触嗅)而言的。第二,用户可以通过人的自然技能与这个环境交互。自然技能是指人的头部转动眼动手势等其他人体的动作。第三,虚拟现实往往要借助于一些三维设备和传感设备来完成交互操作。
虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入做出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。常用的有立体头盔、数据手套、三维鼠标、数据衣等穿戴于用户身上的装置和设置于现实环境中的传感装置,如摄像机、地板压力传感器等。
三、虚拟现实技术的特征
1、VR技术的交互性:指用户对虚拟环境中对象的可操作程度和从虚拟环境中得到反
馈的自然程度(包括实时性)。主要借助于各种专用设备(如头盔显示器、数据手套等)产生,从而使用户以自然方式如手势、体势、语言等技能,如同在真实世界中一样操作虚拟环境中的对象。
2、VR技术的沉浸感:又称临场感,是指用户感到作为主角存在于虚拟环境中的真实程度,是VR技术最主要的特征。影响沉浸感的主要因素包括多感知性、自主性、三维图像中的深度信息、画面的视野、实现跟踪的时间或空间响应及交互设备的约束程度等 。
3、VR技术的想象力:指用户在虚拟世界中根据所获取的多种信息和自身在系统中的行为,通过逻辑判断、推理和联想等思维过程,随着系统的运行状态变化而对其未来进展进行想象的能力。对适当的应用对象加上虚拟现实的创意和想象力,可以大幅度提高生产效率、减轻劳动强度、提高产品开发质量。
四、虚拟现实系统的分类
1、桌面式VR系统:使用个人计算机和低级工作站来产生三维空间的交互场景。用户会受到周围现实环境的干扰而不能获得完全的沉浸感,但由于其成本相对较低桌面式VR系统仍然比较普及。
2、沉浸式VR系统:利用头盔显示器、洞穴式显示设备和数据手套等交互设备把用户的视觉、听觉和其他感觉封闭起来,而使用户真正成为VR系统内部的一个参与者,产生一种身临其境、全心投入并沉浸其中的体验。与桌面式VR系统相比,沉浸式VR系统的主要特点在于高度的实时性和沉浸感。
3、增强式VR系统:允许用户对现实世界进行观察的同时,将虚拟图像叠加在真实物
理对象之上。为用户提供与所看到的真实环境有关的、存储在计算机中的信息,从而增强用户对真实环境的感受,又被称为叠加式或补充现实式VR系统。可以使用光学技术或视频技术实现。
4、分布式VR系统:指基于网络构建的虚拟环境,将位于不同物理位置的多个用户或多个虚拟环境通过网络相连接并共享信息,从而使用户的协同工作达到一个更高的境界。主要被应用于远程虚拟会议、虚拟医学会诊、多人网络游戏、虚拟战争演习等领域。
五、虚拟现实技术的应用领域
VR技术的应用极为广泛Helsel与Doherty在1993年对全世界范围内已经进行的805项VR研究项目作了统计结果表明:目前在娱乐教育及艺术方面的应用占据主流达21.4%其次是军事与航空达12.7%医学方面达6.13%机器人方面占6.21%商业方面占4.96%另外在可视化计算制造业等方面也有相当的比重下面简要介绍其部分应用
1、教育与训练
虚拟现实技术能使学习者能直接、自然地与虚拟对象进行交互,以各种形式参与事件的发展变化过程,并获得最大的控制和操作整个环境的自由度。
包括:仿真教学与实验、特殊教育、多种专业训练、应急演练和军事演习
2、设计与规划
虚拟现实已被看作是设计领域中唯一的开发工具。它可以避免传统方式在原型制造、设计和生产过程中的重复工作,有效的降低成本,应用领域包括汽车制造业、城市规划、
建筑设计等。
3、科学计算可视化
科学可视化的功能就是将大量字母、数字数据转换成比原始数据更容易理解的各种图像,并允许参与者借助各种虚拟现实输入设备检查这些“可见的”数据。它通常被用于建立分子结构、地震以及地球环境等模型。
4、商业领域
VR技术被逐步应用于网上销售、客户服务、电传会议及虚拟购物中心等商业领域。它可以使客户在购买前先看到产品的外貌与内在,甚至在虚拟世界中使用它,因此对产品的推广和销售都很有帮助。
5、艺术与娱乐
VR技术所具有的身临其境感及实时交互性还能将静态的艺术(如油画、雕刻等)转化为动态的形式,使观赏者更好地欣赏作者的思想艺术,包括虚拟画廊、虚拟音乐厅、文物保护等方面。
娱乐是VR系统的另一个重要应用领域,市场上已经推出了多款VR环境下的电脑游戏,带给游戏者强烈的感官刺激。
丰富的感觉能力与3D显示环境使得VR成为理想的视频游戏工具。由于在娱乐方面对VR的真实感要求不是太高,故近些年来VR在该方面发展最为迅猛。如Chicago(芝加哥)开放了世界上第一台大型可供多人使用的VR娱乐系统。其主题是关于3025年的
一场未来战争;英国开发的称为“Virtuality”的VR游戏系统配有HMD大大增强了真实感;1992年的一台称为“LegealQust”的系统由于增加了人工智能功能使计算机具备了自学习功能大大增强了趣味性及难度,使该系统获该年度VR产品奖。另外在家庭娱乐方面VR也显示出了很好的前景。
作为传输显示信息的媒体,VR在未来艺术领域方面所具有的潜在应用能力也不可低估。VR所具有的临场参与感与交互能力可以将静态的艺术(如油画雕刻等)转化为动态的可以使观赏者更好地欣赏作者的思想艺术。另外VR提高了艺术表现能力,如一个虚拟的音乐家可以演奏各种各样的乐器,手足不便的人或远在外地的人可以在他生活的居室中去虚拟的音乐厅欣赏音乐会等等。
对艺术的潜在应用价值同样适用于教育如在解释一些复杂的系统抽象的概念,如在量子物理等方面VR是非常有力的工具。Lofin等人在1993年建立了一个“虚拟的物理实验室”用于解释某些物理概念,如位置与速度力量与位移等。
6、医学
VR在医学方面的应用具有十分重要的现实意义。在虚拟环境中可以建立虚拟的人体模型,借助于跟踪球HMD感觉手套,学生可以很容易了解人体内部各器官结构。这比现有的采用教科书的方式要有效得多。
Pieper及Satara等研究者在90年代初基于两个SGI工作站建立了一个虚拟外科手术训练器,用于腿部及腹部外科手术模拟。这个虚拟的环境包括虚拟的手术台与手术灯虚拟的外科工具(如手术刀注射器手术钳等)。虚拟的人体模型与器官等借助于HMD及感觉手套使用者可以对虚拟的人体模型进行手术,但该系统有待进一步改进,如提高环境的真
实感,增加网络功能使其能同时培训多个使用者或可在外地专家的指导下工作等。
另外在远距离邑外科手术复杂手术的计划安排手术过程的信息指导中,手术后果预测及改善残疾人生恬状况乃至新型药物的研制等方面,VR技术都有十分重要的意义。
7、军事与航天工业
模拟与练一直是军事与航天工业中的一个重要课题。这为VR提供了广阔的应用前景。美国国防部高级研究计划局DARPA自80年代起一直致力于研究称为SIMNET的虚拟战场系统。
以提供坦克协同训1练该系统可联结200多台模拟器,另外利用VR技术可模拟零重力环境以代替现在非标准的水下训练宇航员的方法。
8、管理工程
VR在管理工程方面也显示出了无与伦比的优越性。如设计一新型建筑物时,可以在建筑物动工之前用VR技术显示一下。当财政发生危机时,可以帮助分析大量的股票债券等方面的数据以寻找对策等等。
以上仅列出虚拟现实的部分应用前景。可以预见在不久的将来虚拟现实技术将会影响甚至改变我们的观念与习惯,并将深入到人们的日常工作与生活。
六、虚拟现实技术的研究现状
1、国外的研究现状
美国是VR技术的发源地。美国VR研究技术的水平基本上就代表国际VR发展的水平。目前美国在该领域的基础研究主要集中在感知、用户界面、后台软件和硬件四个方面。
美国宇航局的Ames实验室:将数据手套工程化,使其成为可用性较高的产品。在约翰逊空间中心完成空间站操纵的实时仿真。大量运用了面向座舱的飞行模拟技术。对哈勃太空望远镜的仿真。现在正致力于一个叫“虚拟行星探索”(VPE)的试验计划。现在NASA己经建立了航空、卫星维护VR训练系统,空间站VR训练系统,并且已经建立了可供全国使用的VR教育系统。
北卡罗来纳大学(UNC)的计算机系是进行VR研究最早最著名的大学。他们主要研究分子建模、航空驾驶、外科手术仿真、建筑仿真等。
Loma Linda大学医学中心的David Warner博士和他的研究小组成功地将计算机图形及VR的设备用于探讨与神经疾病相关的问题,首创了VR儿科治疗法。
麻省理工学院(MIT)是研究人工智能、机器人和计算机图形学及动画的先锋,这些技术都是VR技术的基础,1985年MIT成立了媒体实验室,进行虚拟环境的正规研究。
SRI研究中心建立了“视觉感知计划”,研究现有VR技术的进一步发展。1991年后,SRI进行了利用VR技术对军用飞机或车辆驾驶的训练研究,试图通过仿真来减少飞行事故。
华盛顿大学华盛顿技术中心的人机界面技术实验室(HIT Lab)将VR研究引入了教育、设计、娱乐和制造领域。伊利诺斯州立大学研制出在车辆设计中支持远程协作的分布式VR系统。
乔治梅森大学研制出一套在动态虚拟环境中的流体实时仿真系统。从90年代初起,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:一是虚拟战场环境。二是进行单兵模拟训练。三是实施诸军兵种联合演习。四是进行指挥员训练。
在欧洲,英国在VR开发的某些方面,特别是在分布并行处理、辅助设备(包括触觉反馈)设计和应用研究方面,在欧洲来说是领先的。英国Bristol公司发现,VR应用的交点应集中在整体综合技术上,他们在软件和硬件的某些领域处于领先地位。英国ARRL公司关于远地呈现的研究实验,主要包括VR重构问题。他们的产品还包括建筑和科学可视化计算。
欧洲其它一些较发达的国家如:荷兰、德国、瑞典等也积极进行了VR的研究与应用。
瑞典的DIVE分布式虚拟交互环境,是一个基于Unix的,不同节点上的多个进程可以在同一世界中工作的异质分布式系统。
荷兰海牙TNO研究所的物理电子实验室(TNO-PEL)开发的训练和模拟系统,通过改进人机界面来改善现有模拟系统,以使用户完全介入模拟环境。
德国在VR的应用方面取得了出乎意料的成果。在改造传统产业方面,一是用于产品设计、降低成本,避免新产品开发的风险;二是产品演示,吸引客户争取定单;三是用于培训,在新生产设备投入使用前用虚拟工厂来提高工人的操作水平。
2008年10月27-29日在法国举行的ACM Symposium on Virtual Reality Software and Technology大会,整体上促进了虚拟现实技术的深入发展。
在亚洲,日本虚拟现实技术研究发展十分迅速,同时韩国、新加坡等国家也在积极开展虚拟现实技术方面的研究工作。
在当前实用虚拟现实技术的研究与开发中日本是居于领先地位的国家之一,主要致力于建立大规模VR知识库的研究。另外在虚拟现实的游戏方面的研究也做了很多工作。
东京技术学院精密和智能实验室研究了一个用于建立三维模型的人性化界面。
NEC公司开发了一种虚拟现实系统,它能让操作者都使用“代用手”去处理三维CAD中的形体模型,该系统通过数据手套把对模型的处理与操作者手的运动联系起来。
京都的先进电子通信研究所(ATR)正在开发一套系统,它能用图像处理来识别手势和面部表情,并把它们作为系统输入。
日本国际工业和商业部产品科学研究院开发了一种采用X、Y记录器的受力反馈装置。
东京大学的高级科学研究中心将他们的研究重点放在远程控制方面,最近的研究项目是主从系统。该系统可以使用户控制远程摄像系统和一个模拟人手的随动机械人手臂。
东京大学原岛研究室开展了3项研究:人类面都表情特征的提取、三维结构的判定和三维形状的表示、动态图像的提取。
东京大学广濑研究室重点研究虚拟现实的可视化问题。为了克服当前显示和交互作用技术的局限性,他们正在开发一种虚拟全息系统。
筑波大学研究一些力反馈显示方法,开发了九自由度的触觉输入器,虚拟行走原型系
统。
富士通实验室有限公司正在研究虚拟生物与VR环境的相互作用。他们还在研究虚拟现实中的手势识别,已经开发了一套神经网络姿势识别系统,该系统可以识别姿势,也可以识别表示词的信号语言。
2、国内的研究现状
我国从20世纪80年代起开始研究VR技术。虽然起步较晚,但近年来有关部门非常重视,制定了开展VR技术的研究计划,并将其列入国家重点研究项目。国内的一些科学家和重点院校也已积极投入了对这一领域的研究。
和一些发达国家相比,我国VR技术还有一定的差距,但已引起有关部门和科学家们的高度重视。根据我国的国情,制定了开展VR技术的研究。九五规划、国家自然科学基金委、国家高技术研究发展计划等都把VR列入了研究项目。在紧跟国际新技术的同时,国内一些重点院校,已积极投入到了这一领域的研究工作。国内最早开展此项技术试验的是挂靠在西北工业大学电子工程系的西安虚拟现实工程技术研究中心。该中心的成立,对发挥学校电子信息工程学院等其他院系和研究所在虚拟现实、虚拟仿真与虚拟制造等方面的研究优势将具有积极作用。
北京航空航天大学计算机系也是国内最早进行VR研究、最有权威的单位之一,他们首先进行了一些基础知识方面的研究,并着重研究了虚拟环境中物体物理特性的表示与处理;在虚拟现实中的视觉接口方面开发出部分硬件,并提出有关算法及实现方法;实现了分布式虚拟环境网络设计,建立了网上虚拟现实研究论坛,可以提供实时三维动态数据库,提供虚拟现实演示环境,提供用于飞行员训练的虚拟现实系统,提供开发虚拟现实应用系
统的开发平台,并将要实现与有关单位的远程连接。
浙江大学CAD&CG国家重点实验室开发出了一套桌面型虚拟建筑环境实时漫游系统,采用了层面迭加绘制技术和预消隐技术,实现了立体视觉,同时还提供了方便的交互工具,使整个系统的实时性和画面的真实感都达到了较高的水平。另外,他们还研制出了在虚拟环境中一种新的快速漫游算法和一种递进网格的快速生成算法。
哈尔滨工业大学已经成功地虚拟出了人的高级行为中特定人脸图像的合成,表情的合成和唇动的合成等技术问题,并正在研究人说话时头势和手势动作,话音和语调的同步等。
清华大学计算机科学和技术系对虚拟现实和临场感的方面进行了研究,例如球面屏幕显示和图像随动、克服立体图闪烁的措施和深度感实验等方面都具有不少独特的方法。他们还针对室内环境水平特征丰富的特点,提出借助图像变换,使立体视觉图像中对应水平特征呈现形状一致性,以利于实现特征匹配,并获取物体三堆结构的新颖算法。
西安交通大学信息工程研究所对虚拟现实中的关键技术——立体显示技术进行了研究。他们在借鉴人类视觉特性的基础上提出了一种基于JPEG标准压缩编码新方案,并获得了较高的压缩比、信噪比以及解压速度,并且己经通过实验结果证明了这种方案的优越性。
中国科技开发院威海分院主要研究虚拟现实中视觉接口技术,完成了虚拟现实中的体视图像对算法回显及软件接口。他们在硬件的开发上己经完成了LCD红外立体眼镜,并且已经实现商品化。
北方工业大学CAD研究中心是我国最早开展计算机动画研究的单位之一,中国第一部
完全用计算机动画技术制作的科教片《相似》就出自该中心。关于虚拟现实的研究已经完成了2个“863”项目,完成了体视动画的自动生成部分算法与合成软件处理,完成了VR图像处理与演示系统的多媒体平台及相关的音频资料库,制作了一些相关的体视动画光盘。
另外,北京邮电大学自动化学院、西北工业大学CAD/CAM研究中心、上海交通大学图像处理模式识别研究所,长沙国防科技大学计算机研究所、华东船舶工业学院计算机系、安徽大学电子工程与住处科学系等单位也进行了一些研究工作和尝试。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 69lv.com 版权所有 湘ICP备2023021910号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务