搜索
您的当前位置:首页正文

二进制运算

来源:六九路网


二进制运算

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。二进制数据也是采用位置计数法,其位权是以2为底的幂。

二进制数据的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。

1. 二进制加法

有四种情况: 0+0=0

0+1=1

1+0=1

1+1=10 进位为1

【例1103】求 (1101)2+(1011)2 的和

解:

1 1 0 1

+ 1 0 1 1

-------------------

1 1 0 0 0

2. 二进制乘法

有四种情况: 0×0=0

1×0=0

0×1=0

1×1=1

【例1104】求 (1110)2 乘(101)2 之积

解:

1 1 1 0

× 1 0 1

-----------------------

1 1 1 0

0 0 0 0

1 1 1 0

-------------------------

1 0 0 0 1 1 0

(这些计算就跟十进制的加或者乘法相同,只是进位的数不一样而已,十进制的是到十才进位这里是到2就进了)

二进制与十进制间的相互转换:

(1)二进制转十进制

方法:“按权展开求和”

例: (1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10

=(8+0+2+1+0+0.25)10

=(11.25)10

规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十

分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

注意:不是任何一个十进制小数都能转换成有限位的二进制数。

(2)十进制转二进制

· 十进制整数转二进制数:“除以2取余,逆序排列”(短除反取余法例: (89)10 =(1011001)2

2 89

2 44 ……1

2 22 ……0

2 11 ……0

2 5 ……1

2 2 ……1

2 1 ……0

0 ……1

· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)

例: (0.625)10= (0.101)2

0.625

X 2

1.25 1

X 2

0.5 0

X 2

1.0 1

因篇幅问题不能全部显示,请点此查看更多更全内容

Top